Claim Missing Document
Check
Articles

Found 8 Documents
Search

Rotating-Magnetic-Field-Assisted Electrodeposition of Copper for Ambulance Medical Equipment Syamsuir, Syamsuir; Susetyo, Ferry Budhi; Soegijono, Bambang; Yudanto, Sigit Dwi; Basori, Basori; Ajiriyanto, Maman Kartaman; Edbert, Daniel; Situmorang, Evi Ulina Margaretha; Nanto, Dwi; Rosyidan, Cahaya
Automotive Experiences Vol 6 No 2 (2023)
Publisher : Automotive Laboratory of Universitas Muhammadiyah Magelang in collaboration with Association of Indonesian Vocational Educators (AIVE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31603/ae.9067

Abstract

This study examines the influence of the application of a rotating magnetic field in the electrodeposition of copper (Cu). During the electrodeposition, five constant magnets were rotated (500 and 800 rpm) towards the bottom of the sample. To investigate deposition rate, surface morphology, phase, structure, corrosion resistance, and hardness in deposited Cu using a weighing scale, a scanning electron microscope equipped with energy dispersive spectroscopy (SEM-EDS), X-ray diffraction (XRD), potentiodynamic polarization, and hardness tester respectively. Bacterial activity was also evaluated through this research. Morphological surface observations showed that the increase in the rotational speed of the magnets during the electrodeposition process led to a smooth surface. A perfect Cu phase covers Al alloy with no oxide. The potentiodynamic polarization demonstrated by the increase in the rotating led to a shift to the more positive value of the corrosion potential. Moreover, the corrosion current also decreases with the increase in the rotating speed of the magnets. Less crystallite size promoted forming a higher hardness and inhibition zone of the Cu films.
Carbon Micron-size Content Dependency in Epoxy/Carbon Composite Coated onto SPCC Plate for Automotive Bodies Protection Anggrainy, Rani; Susetyo, Ferry Budhi; Lubi, Ahmad; Yudanto, Sigit Dwi; Rosyidan, Cahaya; Soegijono, Bambang; Ajiriyanto, Maman Kartaman; Kurniawan, Ova; Nanto, Dwi
Science and Technology Indonesia Vol. 9 No. 4 (2024): October
Publisher : Research Center of Inorganic Materials and Coordination Complexes, FMIPA Universitas Sriwijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26554/sti.2024.9.4.989-998

Abstract

Conventional epoxy coating for surface metal corrosion protection reported many unsolved technical problems. Adding filler in the epoxy could enhance the promising properties of the composite coating. Our work describes in detail the synthesizing and characterizing epoxy/carbon composite coating. Epoxy was mixed with thinner high gloss (HG) and hardener and stirred using a stirrer apparatus. After blending, various carbons were added (1 wt. %, 3 wt. %, and 5 wt. %) and then appropriately stirred. The different mixture composite was coated onto the steel plate cold rolled coiled (SPCC) plate using high-volume low-pressure (HVLP) in two passes. Various characterizations were performed, including crystallographic orientation, Infra-Red (IR)-spectra, surface morphology, thickness, hydrophobicity, hardness, and corrosion using X-ray diffraction (XRD), Fourier transform infrared (FTIR), Scanning electron microscopy (SEM), portable dry film coating thickness (DFT), digital camera, Vickers microhardness tester, and Potentiostat, respectively. More carbon micron-sized content led to elevate the peak intensity, surface bumpiness, and hydrophobicity. The uppermost external bumpiness and hydrophobicity values are 23.51 µm and 101◦. Hardness depends on carbon content and more carbon leads to an increase in the hardness of the composited coating. The highest average Vickers hardness value is 28.24 HV. The coating thickness influenced the corrosion rate, more coating thickness promoted lesser corrosion rate. The highest coating thickness (60.8 µm) promoted a corrosion rate of around 5.65×10−4 mmpy.
Distillation, Characterizations, and Testing of Distillation Products from Waste Lubricant Oil (WLO) using Compression-Ignition Engine Priyanto, Sugeng; Lubi, Ahmad; Susetyo, Ferry Budhi; Krisyono, Danar Hari; Yudanto, Sigit Dwi; Rohman, Fakhrony Sholahudin; Sudibyo, Sudibyo
Automotive Experiences Vol 7 No 3 (2024)
Publisher : Automotive Laboratory of Universitas Muhammadiyah Magelang in collaboration with Association of Indonesian Vocational Educators (AIVE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31603/ae.11497

Abstract

Waste lubricant oil is always found in motor vehicle repair shops. Utilizing waste lubricant oil by distilling it will provide benefits. For this reason, waste lubricant oil was distilled in this research. Several characterizations were conducted to determine the viscosity, density, low heat value (LHV), and flash point of waste lubricant oil and distillation products. The distillation product is less viscous, denser, LHV, and flash point than lubricant oil waste. The distillation product was mixed with Pertamina DEX (0, 5, 10, and 15 vol.%) and then filled into the fuel tank for the engine performance test. The present experiment utilized a compression-ignition (CI) engine to measure performance. CI engine speed variations were carried out at 1000, 1500, 2000, and 2500 to see the influence of the mixed fuel on torque, power, specific fuel consumption (SFC), thermal efficiency, and smoke opacity. The increase in CI engine speed leads to an increase in torque, power, thermal efficiency, and smoke opacity, but at the same time, SFC decreases to 2500 rpm. Increasing the distillation product content in the mixed fuel decreased torque, power, SFC, thermal efficiency, and increased smoke opacity.
A Small Amount of Sn Addition Effect to Cu-15Zn Alloy on Structure, Microstructure, Hardness, Corrosion Resistance, and Antibacterial Activity Basori, Imam; Sari, Yunita; Prasetya, Dendy Wardhana; Susetyo, Ferry Budhi; Alias, Juliawati; Budi, Setia; Yudanto, Sigit Dwi; Hasbi, Muhammad Yunan; Situmorang, Evi Ulina Margareta; Edbert, Daniel
Science and Technology Indonesia Vol. 10 No. 2 (2025): April
Publisher : Research Center of Inorganic Materials and Coordination Complexes, FMIPA Universitas Sriwijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26554/sti.2025.10.2.443-451

Abstract

Cu-15Zn alloy is widely used as a heat exchanger pipe. CuZn alloy was also used for cardiovascular implant applications. Several problems have been found in that alloy, such as less corrosion resistance. Therefore, various Sn (0.2, 0.7, 1, and 2 wt.%) were added to Cu-15Zn alloy in the present research to enhance corrosion resistance. Afterwards, the alloy was homogenized at 800 °C for 2 hours. Several investigations were conducted, such as structure, microstructure, hardness, corrosion resistance, and bacterial activity, using XRD, Optical microscope, Vickers hardness, Potentiostat equipment, and Digital camera. More Sn content leads to an increase in volume and a decrease in hardness. Presenting Sn in the alloy does not influence the phase in the alloy microstructure. The highest Sn content in the alloy promoted a more positive value of the alloy, indicating that the sample is more cathodic, probably due to the protective layer on the surface. A concentration of 1 wt.% Sn exhibits the most effective antibacterial effect probably due to the small crystallite size.
Rotating speed and magnetic pole dependency assisted on copper deposition onto aluminum alloy substrate for bacterial eradication application Basori, Basori; Ruliyanta; Ajiriyanto, Maman Kartaman; Kriswarini, Rosika; Hardiyanti, Heri; Rosyidan, Cahaya; Yudanto, Sigit Dwi; Situmorang, Evi Ulina Margaretha; Edbert, Daniel; Nanto, Dwi; Susetyo, Ferry Budhi
Communications in Science and Technology Vol 10 No 1 (2025)
Publisher : Komunitas Ilmuwan dan Profesional Muslim Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21924/cst.10.1.2025.1547

Abstract

Copper (Cu) is widely used in many sectors, such as drinking water piping, heat exchangers, and medical equipment. The present research conducted an electrodeposition of Cu over an aluminum (Al) alloy substrate under the influence of various magnetic poles and rotating speeds. In the present study, a number of investigations, including deposition rate, current efficiency, coating thickness, surface morphology and phase, crystallographic orientation, antibacterial activity, electrochemical behavior, and hardness test were conducted. Increasing the rotation speed promoted to enhanced deposition rate and current efficiency for both magnetic poles influence. An increase in the deposition rate from 12.83 to 13.67 µm/h led to the increasing thickness, a change in surface morphology near the spheroidal, becoming a faceted structure. Presenting and rising in the rotation of a magnetic field led to a reduced surface roughness and crystallite size of Cu film for both magnetic poles influence. The Cu film made without spinning magnetic had a characteristic of highest bacterial inhibition zone around 2.50 ±0.56 cm². The CuRN50 sample had the lowest corrosion rate at around 0.055 mmpy, while the CuRS100 sample had the highest hardness value at approximately 80.72 HV for having the lowest crystallite size. Cu coated onto Al alloy could enhance its properties, such as being antimicrobial, being resistant against corrosion and having the hardness value.
Cu Film Characteristics Synthesized Using Electrodeposition Technique at Various Currents and Under a Rotating Neodymium Magnet Susetyo, Ferry Budhi; Basori; Mansor, Muhd Ridzuan; Ruliyanta; Yudanto, Sigit Dwi; Rosyidan, Cahaya; Situmorang, Evi Ulina Margareta; Edbert, Daniel; Mutiara, Etty; Yulianto, Tri; Agus Jamaludin; Nanto, Dwi
Science and Technology Indonesia Vol. 10 No. 4 (2025): October
Publisher : Research Center of Inorganic Materials and Coordination Complexes, FMIPA Universitas Sriwijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26554/sti.2025.10.4.1156-1168

Abstract

In the present study, Cu films were made over Al alloy using the electrodeposition technique. Electrodeposition conducted at various currents (80, 100, and 120 mA), with and without influence by a rotating magnetic field (100 rpm of rotation). 0.5 M CuSO4 + 20 mL of H2SO4 was used for electrolyte solutions. The sample before and after electrodeposition was weighed using digital scale to calculate deposition rate and current efficiency. All formed Cu films were characterized using X-ray diffraction (XRD), attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), Scanning electron microscopy equipped with Energy dispersive spectroscopy (SEM-EDS), and Potentiostat apparatus. Furthermore, antibacterial activity using Staphylococcus aureus was also investigated. Increasing the current of electrodeposition leads to an increase in deposition rate and current efficiency for both conditions (with and without rotating magnetic field influence). Based on the XRD and ATR-FTIR investigation, Cu was successfully deposited onto Al surface. Currents used for the electrodeposition process between 80-100 mA would result in a faceted structure, while using 120 mA results near to spheroidal. Shifting to higher currents leads to decreases in grain sizes and presenting a rotating magnetic field also enhances the grain size. Current and rotating magnetic influences are not linearly influencing corrosion potential, corrosion rate and antibacterial activity. The sample made using higher current plus influencing with a rotating magnetic field has less corrosion rate and higher area of inhibition at around 0.808 mmpy and 4.01 cm2.
Preparation, Characterization, and Photocatalytic Activity of Ni-Cd/Al2O3 Composite Catalyst Yusmaniar, Yusmaniar; Premono, Agung; Susetyo, Ferry Budhi; Yudanto, Sigit Dwi
Bulletin of Chemical Reaction Engineering & Catalysis 2023: BCREC Volume 18 Issue 4 Year 2023 (December 2023)
Publisher : Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.20045

Abstract

This study was conducted to determine the effect of the radiation source and radiation time on the methylene blue (MB) solution by adding Ni-Cd/Al2O3 to the percent degradation of MB. To investigate similar purposes, the pH of the MB solution varied as well. The preparation, characterization, and photocatalytic activity of Ni-Cd/Al2O3 are three steps in this research. The Ni-Cd was prepared by mixing Ni(NO3)2.6H2O and Cd(NO3)2.4H2O. Various concentrations of Ni-Cd were mixed with Al2O3, then heated, stirred, dried, and calcined to form Ni-Cd/Al2O3 powder. The dried powder catalysts were characterized using Field emission scanning electron microscopy (FESEM), Energy-dispersive X-ray spectroscopy (EDS), Brunauer-emmett-teller (BET), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and Diffused reflectance spectrometer spectra (DR-UV-Vis). Higher degradation was observed at pH 11, when MB was degraded by 68% and 76% using the 5Ni-2Cd/Al2O3 and 6Ni-1Cd/Al2O3 catalysts, respectively. The 6Ni-1Cd/Al2O3 sample has higher absorption, less surface area, and less band gap; therefore, it has higher performance against degraded MB in the solution. In summary, 6Ni-1Cd/Al2O3 is capable of degrading MB and can be utilized in MB dye waste. Copyright © 2023 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). 
Structural, Electrochemical, Bacterial Activity, Hardness, and Thermal Properties of Mg Alloy with Various Zn Contents Premono, Agung; Basori, Imam; Sukarno, Ragil; Susetyo, Ferry Budhi; Alhamidi, A. Ali; Anugrah, Hanif Setia; Muqafillah, Mochammad Fajr Dzakwan; Yudanto, Sigit Dwi; Hasbi, Muhammad Yunan; Situmorang, Evi Ulina Margareta; Edbert, Daniel; Mutiara, Etty; Kriswarini, Rosika; Jamaludin, Agus; Ajiriyanto, Maman Kartaman; Rosyidan, Cahaya
Science and Technology Indonesia Vol. 11 No. 1 (2026): January
Publisher : Research Center of Inorganic Materials and Coordination Complexes, FMIPA Universitas Sriwijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26554/sti.2026.11.1.96-108

Abstract

Magnesium (Mg) alloy is used for various medical purposes, such as bone implants. In the present study, MgAlSixZn alloys were created utilizing the gravity casting by adding various Zinc (Zn) (x is 0, 0.5, 1.2, and 1.7 wt.%) and then homogenized at 400 ◦C for around two hours. MgAlSixZn as homogenized samples were investigated for microstructure, phase structure, electrochemical behavior, surface morphology, bacterial activity, hardness, and thermal behavior using an optical microscope, XRD, Potentiostat, SEM-EDS, digital camera, Vickers hardness test, and Thermogravimetric apparatus, respectively. Several findings include that increasing Zn content implies a grain growth inhibition mechanism facilitated by Zn segregation at grain boundaries, increased corrosion rates, a rise in the hardness, and increased weight loss. It should be noted that the increase in the corrosion rate and weight loss occurs linearly for Zn addition in the Mg alloy until 1.2 wt.%. An increase in Zn concentration causes the peak shift in MgAlSi-based alloy samples, but no crystallographic orientation is apparent. At the end, the highest corrosion rate and inhibition area are observed in MgAlSi1.2Zn, which indicates that it is suitable for biodegradable orthopedic wire.