Claim Missing Document
Check
Articles

Found 14 Documents
Search

Application for data collection and monitoring of COVID-19 patients in Sukorame Community Health Center Cinderatama, Toga Aldila; Alhamri, Rinanza Zulmy; Efendi, Fery Sofian; Eliyen, Kunti; Nugroho, Benni Agung
Matrix : Jurnal Manajemen Teknologi dan Informatika Vol. 12 No. 1 (2022): Matrix: Jurnal Manajemen Teknologi dan Informatika
Publisher : Unit Publikasi Ilmiah, P3M, Politeknik Negeri Bali

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31940/matrix.v12i1.19-30

Abstract

The significant increase in COVID-19 cases in Indonesia in May-July 2021 overwhelmed health workers. One of the efforts to monitor the spread of COViD-19 disease is collecting data on patients and proper monitoring. For example, the Sukorame Community Health Center, Mojoroto Kediri, does not yet have an application to record and monitor COVID-19 patients. Data collection is currently done manually by writing in books and excel. This study designed and built a data collection and monitoring application for COVID-19 patients to help Puskesmas staff obtain more accurate patient data and monitor the related patient data. This study implements the waterfall method, including system requirements, design, implementation, verification, and maintenance. The results of this study are the applications that can help and facilitate Community Health Center in collecting data on COVID-19 as a form of effort in overcoming and preventing the spread of COVID-19 in the work area of Sukorame Community Health Center, Kediri City. Based on the user satisfaction questionnaire results, 75% of users consisting of staff and heads of community health centers were helped by this application.
Image Classification of Indonesian Snacks using Convolutional Neural Network Eliyen, Kunti; Izzah, Abidatul; Aullia, Fikha Rizky
Sistemasi: Jurnal Sistem Informasi Vol 14, No 3 (2025): Sistemasi: Jurnal Sistem Informasi
Publisher : Program Studi Sistem Informasi Fakultas Teknik dan Ilmu Komputer

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32520/stmsi.v14i3.4647

Abstract

Each region in Indonesia has its own unique and distinctive culinary traditions. However, many people are still unfamiliar with the names of traditional Indonesian snacks, especially those that originate from regions other than their own. Promoting these traditional snacks is essential as an initial step in educating both domestic and international audiences about Indonesia’s cultural diversity. Culinary heritage is also a key factor in attracting tourists to visit a region. One way to address this issue is through image classification of Indonesian traditional snacks using Convolutional Neural Networks (CNN). This study uses a dataset consisting of 30 images across 10 classes, with 3 images per class. The model was trained over 40 epochs and achieved an accuracy of 86%. The testing phase yielded a recall of 86%, precision of 91%, and an F1-score of 88%.
Development of Virtual Reality Applications - Digital Display for MSME “Tenun Ikat Bandar” Products Efendi, Fery Sofian; Cinderatama, Toga Aldila; Eliyen, Kunti
Journal of Applied Business and Technology Vol. 4 No. 3 (2023): Journal of Applied Business and Technology
Publisher : Institut Bisnis dan Teknologi Pelita Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35145/jabt.v4i3.134

Abstract

Covid-19 has dramatically impacted the SME sector since April 2020. The government has taken steps to support SMEs as part of the national economic recovery efforts during the pandemic. However, surveys conducted by institutions like BPS, Bappenas, and the World Bank have shown that SMEs need help with loan repayment and meeting expenses for electricity, gas, and employee salaries. SMEs face the challenges of layoffs, limited access to raw materials and capital, declining customers, and production and distribution constraints. Furthermore, changing consumer behavior, business competition, and activity restrictions require proactive measures from SMEs. To address these challenges, a team has proposed a sustainable solution - virtual outlets. Based on virtual reality technology, these outlets allow SMEs to display and sell their products in a digital environment. Visitors can explore every aspect of the virtual outlets, simulating the experience of visiting physical stores without needing in-person visits. This aligns with the new standard of physical/social distancing. Visitors can conveniently support SMEs through online transactions by leveraging virtual outlets, eliminating the need to visit physical stores.
Pengembangan Aplikasi Pendeteksi Malware Berbasis Android Menggunakan Perintah Strace Alhamri, Rinanza Zulmy; Eliyen, Kunti; Cinderatama, Toga Aldila; Heriadi, Agustono
Jurnal Informatika Polinema Vol. 12 No. 1 (2025): Vol. 12 No. 1 (2025)
Publisher : UPT P2M State Polytechnic of Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Deteksi malware pada sistem operasi Android dapat dilakukan dengan mengidentifikasi system calls aplikasi sehingga dapat diklasifikasikan sebagai malware atau jinak. Banyak penelitian yang telah dilakukan untuk mengidentifikasi malware, namun pembahasannya belum mendetail sehingga proses deteksi malwre sulit untuk diimplementasikan pada sistem operasi Android. Penelitian ini membahas mengenai aplikasi pendeteksi malware berbasis Android yang dapat melakukan deteksi dengan menerapkan analisis dinamis berdasarkan system calls dengan melakukan rooting agar aplikasi dapat bekerja sesuai fungsi. Hal ini dikarenakan, perintah pelacakan system calls strace dieksekusi harus dengan akses root. Permasalahannya adalah bagaimana menggunakan Wrap Shell Script pada aplikasi pendeteksi malware berbasis Android agar dapat menjalankan perintah Strace. Hasil dari penelitian ini adalah aplikasi dapat menjalankan fungsi meliputi dapat melakukan registrasi, otentikasi, melihat daftar PID aplikasi, pendeteksian malware, melihat hasil deteksi malware, dan melihat halaman kredit telah berhasil dikembangkan.