Waluya, Onny Kartika
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Ambiguitas Machine Translation pada Cross Language Chatbot Bea Cukai Al Haromainy, Muhammad Muharrom; Setyawan, Dimas Ari; Waluya, Onny Kartika; Arifin, Agus Zainal
Register: Jurnal Ilmiah Teknologi Sistem Informasi Vol 5, No 1 (2019): January-June
Publisher : Information Systems - Universitas Pesantren Tinggi Darul Ulum

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1284.702 KB) | DOI: 10.26594/register.v5i1.1387

Abstract

Sistem Information Retrieval (IR) maupun chatbot semakin banyak dikembangkan. Salah satu bagian yang banyak diteliti adalah cross language. Masalah pada pengembangan cross language yaitu terjadinya kesalahan pada hasil terjemahan mesin translasi yang memberikan arti tidak sesuai dengan bahasa natural, sehingga pengguna tidak mendapatkan jawaban yang semestinya, bahkan tidak jarang pula pengguna tidak menemukan jawaban. Penelitian ini mengusulkan skema baru mesin translasi yang bertujuan meningkatkan performa dalam masalah ambiguitas. Mesin translasi bekerja dengan cek kebenaran kata kunci, kemudian melakukan Part-of-Speech (POS) Tagging pada kata benda (noun). Kemudian, setiap kata benda yang terdeteksi akan dicari sinonimnya. Lalu, sinonim yang didapatkan akan ditambahkan dan menjadi alternatif kueri baru. Kueri yang mempunyai nilai confident tertinggi diasumsikan sebagai kueri yang paling sesuai. Pada hasil yang didapatkan setelah dilakukan uji coba, melalui penambahan metode yang kami usulkan pada machine translation, dapat meningkatkan akurasi chatbot dibandingkan tanpa menggunakan skema yang diusulkan. Hasil akurasi bertambah 5%, dari yang semula 73% menjadi 77%.  Information retrieval and chatbot systems are increasingly being developed with its language part mostly studied. However, the problem associated with its development is the occurrence of errors in the translation machine resulting in inaccurate answers not in accordance with the natural language, thereby providing users with wrong answers. This study proposes a new translation machine scheme that aims to improve performance while translating ambiguous terms. Translation machines functions by checking the correctness of keywords, and carrying out Part-of-Speech (POS) Tagging on nouns (noun). The synonyms of any detected noun are searched for and obtained added to become alternative new queries. Those with the highest confident value are assumed to be the most appropriate. The results obtained after testing, through the addition of the method proposed in machine translation, can improve the accuracy of the chatbot compared to not using the proposed scheme. The results of the accuracy increased from the original 73% to 77%.
Ambiguitas Machine Translation pada Cross Language Chatbot Bea Cukai Al Haromainy, Muhammad Muharrom; Setyawan, Dimas Ari; Waluya, Onny Kartika; Arifin, Agus Zainal
Register: Jurnal Ilmiah Teknologi Sistem Informasi Vol 5, No 1 (2019): January
Publisher : Information Systems - Universitas Pesantren Tinggi Darul Ulum

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26594/register.v5i1.1387

Abstract

Sistem Information Retrieval (IR) maupun chatbot semakin banyak dikembangkan. Salah satu bagian yang banyak diteliti adalah cross language. Masalah pada pengembangan cross language yaitu terjadinya kesalahan pada hasil terjemahan mesin translasi yang memberikan arti tidak sesuai dengan bahasa natural, sehingga pengguna tidak mendapatkan jawaban yang semestinya, bahkan tidak jarang pula pengguna tidak menemukan jawaban. Penelitian ini mengusulkan skema baru mesin translasi yang bertujuan meningkatkan performa dalam masalah ambiguitas. Mesin translasi bekerja dengan cek kebenaran kata kunci, kemudian melakukan Part-of-Speech (POS) Tagging pada kata benda (noun). Kemudian, setiap kata benda yang terdeteksi akan dicari sinonimnya. Lalu, sinonim yang didapatkan akan ditambahkan dan menjadi alternatif kueri baru. Kueri yang mempunyai nilai confident tertinggi diasumsikan sebagai kueri yang paling sesuai. Pada hasil yang didapatkan setelah dilakukan uji coba, melalui penambahan metode yang kami usulkan pada machine translation, dapat meningkatkan akurasi chatbot dibandingkan tanpa menggunakan skema yang diusulkan. Hasil akurasi bertambah 5%, dari yang semula 73% menjadi 77%.  Information retrieval and chatbot systems are increasingly being developed with its language part mostly studied. However, the problem associated with its development is the occurrence of errors in the translation machine resulting in inaccurate answers not in accordance with the natural language, thereby providing users with wrong answers. This study proposes a new translation machine scheme that aims to improve performance while translating ambiguous terms. Translation machines functions by checking the correctness of keywords, and carrying out Part-of-Speech (POS) Tagging on nouns (noun). The synonyms of any detected noun are searched for and obtained added to become alternative new queries. Those with the highest confident value are assumed to be the most appropriate. The results obtained after testing, through the addition of the method proposed in machine translation, can improve the accuracy of the chatbot compared to not using the proposed scheme. The results of the accuracy increased from the original 73% to 77%.