Claim Missing Document
Check
Articles

Found 2 Documents
Search

Pengaruh Sintering Serbuk Batuan Basalt sebagai Bahan Penguat pada Komposit Polyester terhadap Sifat Fisik dan Mekanik Hendronursito, Yusup; Saputra, Asep Andri; Rajaguguk, Tumpal Ojahan; Sumardi, Slamet; Supriyatna, Yayat Iman; Isnugroho, Kusno; Birawidha, David Candra; Amin, Muhammad
Jurnal Rekayasa Mesin Vol 12, No 2 (2021)
Publisher : Jurusan Teknik Mesin, Fakultas Teknik, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21776/ub.jrm.2021.012.02.16

Abstract

Basalt rock has great potential in Lampung Province but is only used as a building construction material. Basalt has superior characteristics such as abrasion/wear resistance, compressive strength and chemical reaction resistance making it suitable as a filler or reinforcement for composites. This study aims to determine the effect of basalt rock powder sintering as a reinforcing filler on the mechanical and physical properties of polymer matrix composites. The parameters used included variations in sintering temperature: 8500C, 9500C, and 1.0500C, variations in particle size: 100 < X < 150 mesh, 150 < Y < 200 mesh and 200 < Z < 270 mesh, and the volume fraction comparison of basalt sintering powder and polyester resin. 70: 30%, 80: 20%, and 90: 10%. The experimental design uses the L9 3^3 taguchi orthogonal array run 9 specimens. Taguchi analysis shows that the parameters that affect the mechanical and physical properties are the sintering temperature. sintering temperature contributed 61.77% to wear, and 87.58% to compressive strength, and 95.32% to composite density. The experimental results with the best value obtained a wear value of  0.235 x 10-7mm2 / kg, a compressive strength of 118.873 MPa, and a density of 2.272 gr/cm3.
Low-Grade Ilmenite Leaching Kinetics Using Hydrochloric Acid: RSM and SCM Approaches Supriyatna, Yayat Iman; Prasetya, Agus; Astuti, Widi; Sumardi, Slamet; Natalia, Priskila; Adythia, Dicky Marsa; Petrus, Himawan Tri Bayu Murti
Indonesian Journal of Chemistry Vol 24, No 3 (2024)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ijc.79092

Abstract

Minerals containing TiO2 are common in Indonesia, such as ilmenite in iron sand deposits scattered along the country's coasts. Ilmenite is an important source of titanium. One method for making TiO2 from ilmenite is by solubilizing both the Fe and Ti elements in HCl and then immediately hydrolyze the Ti. The leaching of low-grade ilmenite (ground to 0.177-0.149 mm) is studied kinetically by HCl in a stirred reactor. The research was conducted using the caustic fusion method followed by HCl leaching. The leaching reaction kinetics at the optimum conditions are analyzed using response surface methodology (RSM) with a second-order polynomial equation model and SSE with the shrinking core model (SCM). The results showed that HCl concentration and leaching time were directly proportional to the leached titanium concentration. In contrast, the leaching temperature was inversely proportional. The optimum operating conditions were obtained at a temperature of 30 °C, 9 M HCl, and 120 min of leaching time. The shrinking core model is a better representation of the kinetics than RSM with a second-order polynomial equation model. Based on SCM, the rate of the leaching reaction of titanium from low-grade ilmenite is controlled by diffusion through the ash layer.