Claim Missing Document
Check
Articles

Found 16 Documents
Search

MOLD PROPERTIES OF INDONESIA NATURE SAND AS GREEN SAND Hendronursito, Yusup; Amin, Muhammad; Isnugroho, Kusno; Birawidha, David Candra
Majalah Ilmiah Pengkajian Industri Vol 13, No 1 (2019): MAJALAH ILMIAH PENGKAJIAN INDUSTRI
Publisher : BPPT

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29122/mipi.v13i1.2699

Abstract

The mould properties of Juwono sand, were investigated. The samples were subjected to various physical and mechanical test. These include permeability, green compression strength, and chemical composition by XRF/ XRD analysis. Green shear strength, grain shape, water content, and clay content were also carried out on the samples. Juwono sand casting containing 32.76% clay and category in grade 212/75 of fine sub grades were found to posses adequate permeability, good strength and refractoriness suitable for casting of both ferrous and non ferrous alloys.
UJI FISIS PAPAN PARTIKEL AKAR ALANG-ALANG SESUAI STANDAR SNI 03-2105-2006 Hendronursito, Yusup
Jurnal Teknologi Vol 8 No 1 (2015): Jurnal Teknologi
Publisher : Jurnal Teknologi, Fakultas Teknologi Industri, Institut Sains & Teknologi AKPRIND Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Indonesia memiliki luas ladang alang-alang 8,5 juta ha atau sekitar 4,47% dari luas daratan. Luas ladang alang-alang akan semakin bertambah seiring terbukanya hutan menjadi lahan kosong karena penebangan maupun kebakaran hutan. Alang-alang baru dimanfaatkan secara tradisional oleh masyarakat Indonesia sebagai atap maupun makanan ternak pemakan rumput. Penelitian ini menggali potensi alang-alang untuk dibuat menjadi papan partikel dengan cara yang mudah. Akar alang-alang yang sudah dibersihkan kemudian dijemur sampai kadar air maksimal 10% kemudian akar alang-alang dipotong sampai dengan ukuran 1,7 mm. Akar alang-alang kemudian dipress menggunakan mesin heat press dengan tekanan 10 kg/cm2 hingga 15 kg/cm2. Papan partikel akar alang-alang dilakukan uji fisis sesuai standar SNI 03-2105-2006 yaitu uji dimensi, uji kerapatan, uji kadar air, dan uji pengembangan tebal. Berdasarkan uji fisis papan partikel diperoleh nilai uji kerapatan 0,87 g/cm3, uji kadar air 10%, dan uji pengembangan tebal 8,5 %. Untuk mengetahui distribusi serat akar alang-alang dalam papan partikel dilakukan pengamatan menggunakan SEM (Scanning Electron Microscope). Dari hasil ini dapat disimpulkan bahwa papan partikel akar alang-alang memenuhi persyaratan uji fisis SNI 03-2105-2006.
MOLD PROPERTIES OF INDONESIA NATURE SAND AS GREEN SAND Hendronursito, Yusup; Amin, Muhammad; Isnugroho, Kusno; Birawidha, David Candra
Majalah Ilmiah Pengkajian Industri Vol. 13 No. 1 (2019): Majalah Ilmiah Pengkajian Industri
Publisher : Deputi TIRBR-BPPT

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29122/mipi.v13i1.2699

Abstract

The mould properties of Juwono sand, were investigated. The samples were subjected to various physical and mechanical test. These include permeability, green compression strength, and chemical composition by XRF/ XRD analysis. Green shear strength, grain shape, water content, and clay content were also carried out on the samples. Juwono sand casting containing 32.76% clay and category in grade 212/75 of fine sub grades were found to posses adequate permeability, good strength and refractoriness suitable for casting of both ferrous and non ferrous alloys.
Utilization of Blast Furnace Solid Waste (Slag) As Cement Substitution Material on Mortar Manufacture Amin, Muhammad; Isnugroho, Kusno; Hendronursito, Yusup
Jurnal Riset Teknologi Pencegahan Pencemaran Industri Vol. 9 No. 1 (2018)
Publisher : Balai Besar Standardisasi dan Pelayanan Jasa Pencegahan Pencemaran Industri

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21771/jrtppi.2018.v9.no1.p22-28

Abstract

Slag is defined as a waste material produced from iron ore smelting process in blast furnace. The slag was derived from Research Center for Mineral Technology located in Tanjung Bintang Lampung Selatan with particle size of 80,100, and 120 mesh. The percentages of slag used as cement substitution were 10%, 20%, and 30% from total volume. Test pieces was made by compressing all mixture material in 50 x 50 x 50 mm cubical mortar mold. Physical test of mortars, such as : porosity test, density test and compressive strength test were performed. Based on physical test of samples, it was shown that the higher ratio of slag used in cement substitution gives higher mortar porosity. Substitution of 10% slag with size of 100 mesh produced the porosity of 3.45%, while the substitution 20% and 30% slag with the same size, produced 5.08% and 5.76% porosity, compared with the standard of mortar which was 5.12%. The compressive strength test with 10% slag substitution was 19.3 Mpa, while 20% substitute slag gave the compressive strength of 19.1 Mpa and 30% substitute slag has compressive strength value of 18.7 Mpa. The standard mortar is 17.2 Mpa. However, beside of slag substitution ratio, the slag particle size also affected the compressive strength and porosity. Based on the results explained, the substitution of slag as a substitute for cement in mortar strength was still above the mortar standard.
Processing of granite quarry solid waste into industrial high silica materials using leaching process with HCl concentration variation Hendronursito, Yusup; Amin, Muhammad; Sumardi, Slamet; Marjunus, Roniyus; Clarasati, Frista; Birawidha, David Candra; Muttaqqi, Muhammad Al; Isnugroho, Kusno
Jurnal Riset Teknologi Pencegahan Pencemaran Industri Vol. 11 No. 2 (2020)
Publisher : Balai Besar Standardisasi dan Pelayanan Jasa Pencegahan Pencemaran Industri

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21771/jrtppi.2020.v11.no2.p43-50

Abstract

This study was aimed to increase granite's silica content using the leaching process with HCl concentration variation. The granite used in this study came from Lematang, South Lampung. This study aims to determine the effect of variations in HCl concentration, particle size, and rotational speed on the crystalline phase and chemical elements formed in the silica product produced from granite. The HCl concentration variations were 6.0 M, 7.2 M, 8.4 M, and 9.6 M, the variation in particle size used was 270 and 400 mesh. Variations in rotational speed during leaching were 500 and 750 rpm. Granite powder was calcined at 1000 ºC for 2 hours. Characterization was performed using X-Ray Fluorescence (XRF), X-Ray Diffraction (XRD), and Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP- OES). The results showed that the silica content increased with increasing HCl concentration, the finer the particle size, and the higher the rotational speed. XRF analysis showed that the silica with the highest purity was leached with 9.6 HCl with a particle size of 400 mesh and a rotational speed of of 750 rpm, which was 73.49%. Based on the results above, by leaching using HCl, the Si content can increase from before. The XRD diffractogram showed that the granite powder formed the Quartz phase.
Pengaruh Sintering Serbuk Batuan Basalt sebagai Bahan Penguat pada Komposit Polyester terhadap Sifat Fisik dan Mekanik Hendronursito, Yusup; Saputra, Asep Andri; Rajaguguk, Tumpal Ojahan; Sumardi, Slamet; Supriyatna, Yayat Iman; Isnugroho, Kusno; Birawidha, David Candra; Amin, Muhammad
Jurnal Rekayasa Mesin Vol 12, No 2 (2021)
Publisher : Jurusan Teknik Mesin, Fakultas Teknik, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21776/ub.jrm.2021.012.02.16

Abstract

Basalt rock has great potential in Lampung Province but is only used as a building construction material. Basalt has superior characteristics such as abrasion/wear resistance, compressive strength and chemical reaction resistance making it suitable as a filler or reinforcement for composites. This study aims to determine the effect of basalt rock powder sintering as a reinforcing filler on the mechanical and physical properties of polymer matrix composites. The parameters used included variations in sintering temperature: 8500C, 9500C, and 1.0500C, variations in particle size: 100 < X < 150 mesh, 150 < Y < 200 mesh and 200 < Z < 270 mesh, and the volume fraction comparison of basalt sintering powder and polyester resin. 70: 30%, 80: 20%, and 90: 10%. The experimental design uses the L9 3^3 taguchi orthogonal array run 9 specimens. Taguchi analysis shows that the parameters that affect the mechanical and physical properties are the sintering temperature. sintering temperature contributed 61.77% to wear, and 87.58% to compressive strength, and 95.32% to composite density. The experimental results with the best value obtained a wear value of  0.235 x 10-7mm2 / kg, a compressive strength of 118.873 MPa, and a density of 2.272 gr/cm3.
Utilization of Iron Ore Slag in The Manufacture of Calcium Silicate Boards Hendronursito, Yusup; Amin, Muhammad; Al Muttaqii, Muhammad; Karo Karo, Pulung; Yulia, Andini; Candra Birawidha, David; Isnugroho, Kusno
Jurnal Riset Teknologi Pencegahan Pencemaran Industri Vol. 12 No. 2 (2021)
Publisher : Balai Besar Standardisasi dan Pelayanan Jasa Pencegahan Pencemaran Industri

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21771/jrtppi.2021.v12.no2.p25-33

Abstract

This study aims to determine the iron ore slag effect as an additive in particleboard based on the SNI 7705:2011 standard. Iron ore slag comes from the waste processing of iron ore into sponge iron. The iron ore slag is reduced to a size of 200 mesh. Particleboard made with the composition of slag and silica is 0:40, 8:32, 16:24, 20:20, 24:16, 32:8, and 40:0 wt%. Meanwhile, other materials were made permanent, namely PCC cement and lime 16 wt%, coconut fiber 3wt%, and water 3 wt%. They are pressed with 3 tons of pressure for 1 hour using a hydraulic press. Drying at room temperature for one day, under the hot sun for two days, then in an oven at 110 oC for 8 hrs. Analysis of the chemical composition of X-ray fluorescence and X-ray diffraction crystalline phase, SEM-EDS micro-photographs, physical tests including density and porosity, and mechanical compressive strength tests. The dominant composition of SiO2 and CaO affects the formation of silicon dioxide (SiO2), calcium silicate (CaSiO3), and dicalcium silicate (Ca2SiO4) phases. Silica has a positive effect on the compressive strength of particleboard but is different from Ca, which has an impact on reducing the compressive strength. The sem morphology shows that coconut fiber cannot withstand heating at 190 oC and results in agglomeration. The addition of 20% ore slag and silica has met the calcium silicate board SNI 7705-2011. These results can be used to develop slag waste from iron ore processing into much more useful objects.
Optimization of Stir Casting of Aluminum Matrix Composites (AMCs) with Filler of Recycled Glass Powder (RGP) for The Mechanical Properties Hendronursito, Yusup; Rajagukguk, Tumpal Ojahan; Anshori, Anang; Yunanto, Asep
Journal of Mechanical Engineering Science and Technology (JMEST) Vol 4, No 2 (2020)
Publisher : Universitas Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17977/um016v4i22020p101

Abstract

A study of making Aluminum Matrix Composites (AMCs) uses recycled glass powder (RGP) as a filler has been carried out through the stir casting process. The experimental design uses the Taguchi method of 3^3 orthogonal array L9 with the parameters of powder size (20>x> 80, 80>y> 200, 200>z> 325), percentage of filler vs matrix (2%, 7%, 12%), and stirring time (30 Seconds, 3 Minutes, 12 Minutes). The optimum conditions for the hardness of Al-GRp composites were obtained from specimens with Mesh powder size parameters 200> z> 325, the percentage of glass vs aluminum powder was 12% wt, stirring time was 12 minutes. The experimental factor that has the greatest contribution to the hardness value of Al-GRP composites is the size of glass powder of 73.77%, followed by the percentage of glass powder to aluminum by 19.98%, and the stirring time of 1.21%. The optimum experimental parameters for tensile strength can be obtained from specimens with particle size parameters of 20> x> 80, the percentage of glass powder to the weight of aluminum 12%, and the stirring time of 30 seconds. The biggest contribution to the tensile strength value of the Al-GRP composite was the stirring time of 72.71%, followed by the percentage of glass powder to aluminum by 13.67%, and the size of the powder was 9.97%.
A porous activated carbon derived from banana peel by hydrothermal activation two-step methods Hendronursito, Yusup; Astuti, Widi; Sabarman, Harsojo; Santoso, Iman
International Journal of Renewable Energy Development Vol 14, No 2 (2025): March 2025
Publisher : Center of Biomass & Renewable Energy (CBIORE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.61435/ijred.2025.60847

Abstract

Activated carbon from banana peel waste through two stages of hydrothermal (HT) and physical activation processes has been carried out. The hydrothermal process was carried out at a temperature of 200 oC with a holding time of 2 or 6 hours. The hydrochar that had been obtained was then activated in the second stage with nitrogen gas flow (N2) at a temperature of 700 oC for 1 hour with a flow rate of 100 mL/min. The difference in treatment, without the HT process, two stages of activation, variations in activator agents (water, H3PO4, and PEG6000), water volume ratio and HT process holding time were studied for their effects on the specific surface area (SSA) and structure of activated carbon. SSA was measured using the Brunauer–Emmett–Teller (BET) adsorption method, x-ray crystallography was used to identify the crystalline phase and carbon structure parameters, and the surface morphology of activated carbon was observed using FESEM. The results showed that the activation method and process conditions greatly influenced the (SSA) of activated carbon. HT activation using a combination of activator agents produced an SSA reaching 476.9 m2/g. X-ray diffraction analysis showed that HT activation increased the degree of crystallization of activated carbon. The spherical surface structure of activated carbon was formed when H3PO4 was added, while the layered structure was formed when PEG6000 was used. Overall, the two-step activation preceded by the HT process with the addition of H3PO4 produced activated carbon with better SSA and carbon structure and has the potential to be used in wide applications such as EDLC supercapacitor electrode materials, battery cathodes, and adsorption materials.
Sintering Behavior of Lampung Limestone-Based Hydroxyapatite for Use as a Bone Filler Material Saputra, Rizal Adi; Sukmana, Irza; Hendriyanto, Agus; Riszal, Akhmad; Hendronursito, Yusup; Wicaksono, Mahruri Arif
International Journal of Aviation Science and Engineering - AVIA Vol. 6 No. 2: (December, 2024)
Publisher : FTMD Institut Teknologi Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47355/avia.v6i2.141

Abstract

Limestone from Mount (Mt.) Beranti, Lampung Province, contains 97.43% calcium carbonate (CaCO₃), making it a suitable natural precursor for synthesizing hydroxyapatite (HA). HA is widely utilized as a bone tissue filler, particularly in treating osteoporosis. In this study, CaCO₃ was processed using ball milling at 300 rpm for durations of 2, 3, and 4 hours, followed by sintering at temperatures of 600°C, 800°C, and 1000°C for holding times of 2, 3, and 4 hours. FTIR analysis using the hydrothermal method on calcined limestone powder revealed characteristic peaks corresponding to phosphate (PO₄³⁻) at 1025.45 cm⁻¹, calcium oxide (Ca–O) at 1413.59 cm⁻¹, and hydroxyl (O–H) at 3030.33 cm⁻¹, which closely resemble those found in commercial HA. SEM-EDX analysis at 1000°C for 4 hours showed a homogenous microstructure, with EDX results indicating the highest concentrations of calcium and phosphate after milling for 2 hours. Vickers hardness testing confirmed the highest hardness value was also achieved at 1000°C for 4 hours. Overall, the FTIR, SEM-EDX, and microhardness results demonstrate enhanced properties of HA, supporting its effectiveness as a material for filling porous bone tissue. Keywords: Limestone; Hydroxyapatite (HA); Calcium Carbonate (CaCO3); Bone Filler