Claim Missing Document
Check
Articles

Found 15 Documents
Search

PERANCANGAN SISTEM INFORMASI AKADEMIK BERBASIS WEB PADA SMA NEGERI 3 SUKOHARJO Hasan, Fuad Nur; Pratama, Eka Kusuma
Aksara Public Vol 2 No 2 (2018): Mei (2018)
Publisher : EDUTECH CONSULTANT

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

The process of delivering information in SMAN 3 Sukoharjo is still using the manual system. With a system like this, certainly it will slow down the process of delivering information. Delivery errors occur when information is often still being done by manual systems. In order to speed up the delivery of information and reducing information delivery errors, it requires a web-based information systems academic. With internet media intermediaries’ course, information process will be faster. Academic information systems development methods, the authors used in designing a good system is to use the waterfall method. For a proposed database design Entity Relationship Diagram (ERD) and Logical Record Structure (LRS). Data was collected through observation, interviews, and literature. Implementation of the program using Adobe Dreamweaver CS6 with a MySQL database by using phpMyAdmin. With the system he designed a web-based academic information in SMAN 3 Sukoharjo expected process of delivering information to more effectively and efficiently, so that the school community, especially students and teachers can find the information anytime and anywhere.
PERBANDINGAN METODE AHP DAN TOPSIS UNTUK KEPUTUSAN PEMILIHAN CHIPSET PADA SMARTPHONE Pratama, Eka Kusuma; Hasan, Fuad Nur
Aksara Public Vol 3 No 2 (2019): Mei (2019)
Publisher : EDUTECH CONSULTANT

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Many smartphone manufacturers offer their products with high-specification chipsets but are not matched with appropriate hardware support devices, which makes the specifications not optimal for cutting production costs. Many chipsets from several manufacturers with the same specifications but produce different performance.Taking into account the existing criteria, the authors use the method Hierarcy Analytical Process (AHP) is used for the main criteria and Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) is used for the coupling of strategic alternatives. The data processing software used is the expert choice.This research was conducted to determine the best chipset for a smartphone. The alternative choice of chipset in this study is type 800, type 600 and type 400. From the data I get, it can be seen that chipsets with type 400 are more desirable when compared to other types with a percentage of 42.1%.
Simple Additive Weighting untuk Front-end Framework Terbaik Yusuf, Lestari; Hidayatulloh, Taufik; Nurlaela, Dini; Utami, Lila Dini; Hasan, Fuad Nur
ILKOM Jurnal Ilmiah Vol 12, No 2 (2020)
Publisher : Teknik Informatika Fakultas Ilmu Komputer Univeristas Muslim Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33096/ilkom.v12i2.593.136-142

Abstract

Web applications that used to run on a desktop in recent years have received huge demand for this area to be more sophisticated and complex, not only that, but users also want web applications to run on mobile devices. Web appearance that is only designed for computer devices will make users difficult when opening a web page display on a different device. By using the CSS framework library, web developers will be greatly helped in making the program more responsive and can also be run on a variety of Open Source both Windows, iOS, and Android. Decision-making system that can determine the best front-end Framework can be an alternative solution for web developers to determine which front-end framework is easier and more convenient to use. Simple Additive Weighting is used to analyze and decide which the best alternative with calculations that take five main criteria in this research that is Preprocessor, Responsive, Browser Support, Easy to Use, and Template. In this study the highest prefects were obtained by Bootstrap 1,000 while for foundation and bulma get a large prefensie s 0.868 and 0.820.
Prediksi Penyakit Diabetes Melitus Menggunakan Metode Support Vector Machine dan Naive Bayes Maulidah, Nurlaelatul; Supriyadi, Riki; Utami, Dwi Yuni; Hasan, Fuad Nur; Fauzi, Ahmad; Christian, Ade
Indonesian Journal on Software Engineering (IJSE) Vol 7, No 1 (2021): IJSE 2021
Publisher : Universitas Bina Sarana Informatika

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31294/ijse.v7i1.10279

Abstract

Diabetes melitus adalah penyakit metabolik yang ditandai terjadinya kenaikan gula darah yang disebabkan oleh terganggunya hormon insulin yang memiliki fungsi sebagai hormon dalam menjaga homeostatis tubuh menggunakan cara penurunan kadar gula darah (American Diabetes Association, 2017). World Health Organization (WHO) memperkirakan jumlah penderita diabetes melitus orang dewasa diatas 18 tahun dalam tahun 2014 berjumlah 422 juta (WHO, 2016:25). Prevalensi diabetes melitus Asia Tenggara sudah berkembang dalam tahun 1980 sebanyak 4,1% dan tahun 2014 menjadi sebanyak 8,6%. Menurut Riset Kementerian Kesehatan pada tahun 2018, Prevalensi diabetes Indonesia sebanyak 2,0%, sedangkan di Provinsi Jawa Timur sebanyak 2,6% pada penduduk umur diatas 15 tahun (KEMENKES RI, 2019). Penelitian ini dikembangkan melalui pengolahan data sekunder database kesehatan Dataset Diabetes yang diambil dari dataset Kaggle dan dapat diakses melalui https://www.kaggle.com/johndasilva/diabetes. Dimana datanya sendiri terdiri dari 2000 record dengan beberapa variabel prediktor medik (Pregnancies/Kehamilan, Glucose/Glukosa, BloodPressure/Tekanan Darah, SkinThickness/Ketebalan Kulit, Insulin, BMI/Indeks Masa Tubuh, DiabetesPedigreeFunction/Keturunan, Age/Umur and Outcome/Hasil). Kemudian data tersebut akan diolah dengan menggunakan metode Support Vector Machine dan metode Naive Bayes untuk mengetahui akurasi hasil diagnosa diabetes. Berdasarkan hasil dari penelitian yang sudah dilakukan metode Support Vector Machine memiliki nilai akurasi yang jauh lebih tinggi dibandingkan dengan menggunakan metode Naive Bayes. Nilai akurasi untuk model metode Support Vector Machine adalah 78,04% dan nilai akurasi untuk metode Naive Bayes 76,98%. Berdasarkan nilai ini, perbedaan akurasinya adalah 1,06%. Sehingga dapat disimpulkan bahwa penerapan metode Support Vector Machine mampu menghasilkan tingkat akurasi diagnosis diabetes yang lebih baik dibandingkan dengan menggunakan metode Naive Bayes.
Pemanfaatan Internet Dalam Menunjang Kegiatan Belajar Mengajar Di Masa Pandemi Covid-19 Aryanti, Riska; Saepudin, Atang; Wahyuni, Tri; Hasan, Fuad Nur; Harefa, Kristine
Jurnal Abdimas Komunikasi dan Bahasa Vol. 1 No. 1 (2021): Juni 2021
Publisher : LPPM Universitas Bina Sarana Informatika

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (772.393 KB) | DOI: 10.31294/abdikom.v1i1.331

Abstract

Pandemi Covid-19 berdampak besar pada berbagai sektor, salah satunya pendidikan. Dunia pendidikan juga ikut merasakan dampaknya. Pendidik harus memastikan kegiatan belajar mengajar tetap berjalan, meskipun peserta didik berada di rumah. Solusinya, pendidik dituntut mendesain media pembelajaran sebagai inovasi dengan memanfaatkan media daring (online). Ini sesuai dengan Menteri Pendidikan dan Kebudayaan Republik Indonesia terkait Surat Edaran Nomor 4 Tahun 2020 tentang Pelaksanaan Kebijakan Pendidikan dalam Masa Darurat Penyebaran Corona Virus Disease (Covid-19). Sistem pembelajaran dilaksanakan melalui perangkat Mobile Phone, Personal Computer (PC) atau laptop yang terhubung dengan koneksi jaringan internet. Proses belajar mengajar akhirnya berubah dari bertatap muka secara langsung dikelas menjadi pembelajaran berbasis jaringan/internet atau yang biasa disebut dengan istilah daring. Tidak sedikit peserta didik bahkan pendidik yang masih belum terbiasa dengan sistem pembelajaran daring ini. Oleh karena itu, dosen Program Studi Ilmu Komputer (S1) Universitas Bina Sarana Informatika akan menyelenggarakan sosialisasi/pelatihan terhadap peserta didik khususnya pada warga RT. 002/RW.002 Tegal Parang–Jakarta Selatan. Pelatihan tersebut memiliki tema Pemanfaatan Internet Dalam Menunjang Kegiatan Belajar Mengajar Di Masa Pandemi Covid-19. Pelatihan ini diharapkan mampu menambah pemahaman dan keterampilan para peserta agar lebih mampu memanfaatkan layanan internet dengan lebih bijak untuk menunjang proses belajar mengajar di masa pandemi Covid-19 saat ini. Adapun target luaran dari pelaksanaan Pengabdian Masyrakat ini yaitu berupa publikasi artikel di media online, video dokumentasi kegiatan dan meningkatkan pengetahuan dan keterampilan peserta dalam memanfaatkan layanan internet.
PERBANDINGAN ALGORITMA C4.5, KNN, DAN NAIVE BAYES UNTUK PENENTUAN MODEL KLASIFIKASI PENANGGUNG JAWAB BSI ENTREPRENEUR CENTER Hasan, Fuad Nur; Hikmah, Noer; Utami, Dwi Yuni
Jurnal Pilar Nusa Mandiri Vol 14 No 2 (2018): Pilar Nusa Mandiri : Journal of Computing and Information System Periode Septemb
Publisher : LPPM Universitas Nusa Mandiri

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (914.696 KB) | DOI: 10.33480/pilar.v14i2.35

Abstract

BSI Entrepreneur Center is one of the organizations engaged in entrepreneurship within the Bina Sarana Informatika University with the aim of forming students who want to become entrepreneurs. Currently BSI Entrepreneur Center has had responsibility in each campus of Bina Sarana Informatika University. But the existing human resources have not been able to fulfill the needs as the person in charge of BSI Entrepreneur Center to be placed on each campus of Bina Sarana Informatika University. Therefore, a system is needed to find appropriate human resources to be in charge of the BSI Entrepreneur Center on each campus of the Bina Sarana Informatika University. This study uses primary data as many as 300 records consisting of 12 attributes with the algorithm method C.45, KNN and Naive Bayes to classify employees according to the existing criteria. And the results of this study are suggestions from employees who are eligible to be in charge of BSI Entrepreneurs Center on each campus of the Information Technology Development University with the Naive Bayes method which has a high accuracy of 80%.
PENERAPAN DATA MINING MENGGUNAKAN ALGORITMA K-MEANS UNTUK MENGETAHUI MINAT CUSTOMER DI TOKO HIJAB Yulianti, Yulianti; Utami, Dwi Yuni; Hikmah, Noer; Hasan, Fuad Nur
Jurnal Pilar Nusa Mandiri Vol 15 No 2 (2019): Pilar Nusa Mandiri : Journal of Computing and Information System Periode Septemb
Publisher : LPPM Universitas Nusa Mandiri

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (597.939 KB) | DOI: 10.33480/pilar.v15i2.650

Abstract

Hijab is not a foreign thing for the population in Indonesia, because most of the population of Indonesia is Muslim. Today, many business people, especially hijab sellers, provide a variety of brands and models in the hijab they sell. Therefore sellers are required to be able to think intelligently in making a sales strategy that will certainly be useful to know clearly which products are most in demand by customers, and also to increase sales in their stores. Then there needs to be an alternative that can realize the recording of sales transaction data more quickly and structured. In this study the authors applied the k-means algorithm to determine customer interest in the products they sell. In the calculation that has been done by using two parameters, namely the transaction and the number of sales and passing three iterations with the results of iterations one gets a ratio of 0.374324132, the iteration two gets the ratio 0.543018325, and the iteration three gets the same ratio value as second iteration. So it can be concluded that the hijab that is most desirable by the customers is the hijab with the brand Rabbani, Elzatta, and Zoya, the low-interest hijab branded by Dian Pelangi, Kami Idea, and Meccanism. And the hijab with those who are not high and also not low is the hijab under the brand Ria Miranda, Jenahara, Shasmira, and Shafira.
Analisis Kepuasan Pengguna Sistem Informasi Perpustakaan Ditjen Pothan Kemhan dengan Pieces Framework Nurlelah, Elah; Hasan, Fuad Nur; Rosadi, Dandi
SWABUMI (Suara Wawasan Sukabumi): Ilmu Komputer, Manajemen, dan Sosial Vol 12, No 2 (2024): Volume 12 Nomor 2 Tahun 2024
Publisher : Universitas Bina Sarana Informatika Kota Sukabumi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31294/swabumi.v12i2.23455

Abstract

Tingkat kepuasan adalah suatu tolak ukur yang dapat digunakan untuk memancarkan sesuatu yang digunakan. Penelitian ini dilakukan untuk mengukur tingkat kepuasan pengguna terhadap sistem informasi perpustakaan di Ditjen Pothan Kemhan , yang selama ini belum diketahui informasi penilaian tingkat kepuasan bagi pengguna sistem tersebut. Tujuan utama penelitian ini adalah untuk mengetahui tingkat kepuasan pengguna melalui observasi langsung di Ditjen Pothan Kemhan. Metode yang digunakan dalam penelitian ini adalah PIECES Framework, yang merupakan salah satu model penganalisis yang terdiri: Kinerja (kinerja), Informasi dan Data (informasi dan data), Ekonomi (ekonomi), Pengendalian dan Keamanan (kontrol dan keamanan), Efisiensi (efisiensi ), dan Pelayanan (layanan). Hasil penelitian menunjukkan bahwa tingkat kepuasan pengguna terhadap sistem perpustakaan Ditjen Pothan Kemhan dapat dipecah dengan penilaian puas, dengan skor pada masing-masing variabel sebagai berikut: Kinerja 4,67, Informasi dan Data 4,74, Ekonomi 4,62, Pengendalian dan Keamanan 4,59, Efisiensi 4,79, dan Pelayanan 4,74. Penelitian ini diharapkan dapat menjadi acuan untuk pengembangan lebih lanjut sistem informasi perpustakaan tersebut.The level of satisfaction is a benchmark that can be used to evaluate something that is used. This study was conducted to measure the level of user satisfaction with the library information system at the Directorate General of Defense and Defense Ministry, which has not been known to assess the level of satisfaction for users of the information system. The main objective of this study is to determine the level of user satisfaction through direct observation at the Directorate General of Defense and Defense Ministry. The method used in this study is the PIECES Framework, which is one of the analysis models consisting of: Performance, Information and Data, Economics, Control and Security, Efficiency, and Service. The results of the study indicate that the level of user satisfaction with the library information system of the Directorate General of Defense and Defense Ministry can be categorized as satisfied, with scores for each variable as follows: Performance 4.67, Information and Data 4.74, Economics 4.62, Control and Security 4.59, Efficiency 4.79, and Service 4.74. This study is expected to be a reference for further development of the library information system.
Comparison of the Naïve Bayes Method and Support Vector Machine in Sentiment Analysis of Genshin Impact Game Reviews Pratama, Mr. Aldiansyah; Hasan, Fuad Nur
International Journal of Mechanical Computational and Manufacturing Research Vol. 13 No. 2 (2024): August: Mechanical Computational And Manufacturing Research
Publisher : Trigin Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35335/computational.v13i2.198

Abstract

Genshin Impact was a successful and quite popular game during the 4 years of its release, but behind this there are several positive or negative opinions about this game, both internal and external. Sentiment Analysis is a technique that can identify an opinion in a text that is managed, be it a comment or review. The aim of the research is to compare two algorithms, namely Support Vector Machine and Naïve Bayes, in classifying Genshin Impact game reviews on Google Playstore. This method has several stages, namely crawling data, text preprocessing, using a confusion matrix and k-fold cross validation, all of these stages are carried out using libraries in Python with 1198 review data divided between test data and training data by 90:10 which produces a support vector machine of 73% accuracy, 75% precision, 64% recall and f1-score of 64% while naïve bayes is 72% accuracy, 68% precision, 68% recall and f1-score of 68%. With this comparison it is concluded that support vector machine has a higher evaluation value than naïve bayes, while it is known that the majority of review data has a negative value regarding Genshin Impact game reviews.
Rancang Bangun Sistem Point Of Sale (POS) Berbasis Web Untuk Optimalisasi Transaksi Pada Toko Bangunan Hasan, Fuad Nur; Nurlelah, Elah
SWABUMI (Suara Wawasan Sukabumi): Ilmu Komputer, Manajemen, dan Sosial Vol 13, No 1 (2025): Volume 13 Nomor 1 Tahun 2025
Publisher : Universitas Bina Sarana Informatika Kota Sukabumi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31294/swabumi.v13i1.25765

Abstract

Kemajuan teknologi informasi dan internet telah membawa berbagai kemudahan, terutama dalam mempercepat proses akses informasi, komunikasi, dan layanan lainnya. Point of Sale (POS) merupakan sebuah sistem aplikasi yang dirancang untuk mencatat transaksi penjualan dan mengolah data. Pada Toko Bangunan Ros Mbojo, belum menggunakan sistem Point of Sale ini. Sistem manual ini menyebabkan kesulitan dalam pelayanan, pencatatan transaksi, dan pengelolaan data yang tidak efisien, terutama saat jumlah transaksi meningkat. Penelitian ini bertujuan untuk menghasilkan rancangan sistem aplikasi point of sale berbasis web dengan harapan agar lebih mudah untuk melakukan penjualan dan pengolahan data serta pengembangan transaksi. Metode Penelitian yang digunakan meliputi observasi, wawancara serta studi pustaka untuk menganalisa kebutuhan dari sistem aplikasi Point of Sale, untuk model pengembangan perangkat lunak yang digunakan penulis yaitu model waterfall. Hasil dari penelitian ini adalah sistem POS dapat membantu dalam perekapan data penjualan, data pembelian dan stok sehingga proses penjualan dapat lebih transparan, kemudian memudahkan pemilik toko dalam memantau penjualan, pembelian, dan stok barang secara langsung atau real-time sehingga dapat meningkatkan efisiensi serta kinerja toko. Advances in information technology and the internet have brought various conveniences, especially in accelerating the process of accessing information, communication, and other services. Point of Sale (POS) is an application system designed to record sales transactions and process data. At Ros Mbojo Building Shop, we have not used this Point of Sale system. This manual system causes difficulties in service, recording transactions, and inefficient data management, especially when the number of transactions increases. This research aims to produce a web-based point of sale application system design with the hope that it will be easier to make sales and data processing and transaction development. The research methods used include observation, interviews and literature studies to analyze the needs of the Point of Sale application system, for the software development model used by the author, namely the waterfall model. The result of this research is that the POS system can assist in recording sales data, purchase data and stock so that the sales process can be more transparent, then make it easier for shop owners to monitor sales, purchases and stock of goods directly or in real-time so as to increase efficiency and store performance.