Sharipuddin, Sharipuddin
Unknown Affiliation

Published : 13 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 13 Documents
Search

Analisis dan Perancangan Sistem Informasi Penilaian Kinerja Guru Yayasan Rusyda Medi Andri Medan Takhir, Said Hambali; Jasmir, Jasmir; Sharipuddin, Sharipuddin
Jurnal Sistem Informasi Triguna Dharma (JURSI TGD) Vol. 4 No. 1 (2025): EDISI JANUARI 2025
Publisher : STMIK Triguna Dharma

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.53513/jursi.v4i1.10573

Abstract

Penelitian ini bertujuan untuk mengembangkan sistem informasi penilaian kinerja guru berbasis web yang diterapkan di Yayasan Rusyda Medi Andri Medan. Sistem ini dirancang untuk memberikan penilaian yang lebih objektif, transparan, dan efisien. Sistem Informasi Penilaian Guru dirancang untuk menghasilkan peringkat kinerja guru secara terstruktur. Proses pengembangan sistem mengikuti metode waterfall yang melibatkan analisis kebutuhan, perancangan sistem, implementasi, dan pengujian menggunakan black-box testing. Sistem berbasis web ini dibangun menggunakan Balsamiq. Hasil implementasi menunjukkan bahwa sistem mampu memberikan rekomendasi penilaian secara lebih akurat dibandingkan metode manual sebelumnya, mengurangi risiko subjektivitas, dan meningkatkan kepercayaan para guru terhadap hasil evaluasi. Sistem ini diharapkan dapat membantu Yayasan Rusyda Medi Andri Medan dalam mengelola proses penilaian kinerja guru secara lebih efektif, mendukung kebijakan promosi dan penghargaan, serta meningkatkan kualitas pendidikan melalui pengembangan profesionalisme tenaga pengajar.
Two-steps feature selection for detection variant distributed denial of services attack in cloud environment Kurniabudi, Kurniabudi; Winanto, Eko Arip; Sharipuddin, Sharipuddin
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 14, No 5: October 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v14.i5.pp3945-3957

Abstract

The prevalence of cloud computing among organizations poses a significant problem in ensuring security. Specifically, distributed denial of services (DDoS) attacks targeting cloud computing networks can lead to financial losses for consumers of cloud computing services. This assault has the potential to render cloud services inaccessible. The detection system serves as a remedy to prevent more substantial losses. This research aims to enhance the efficacy of the system detection model by integrating feature selection with three machine learning algorithms: decision tree (DT), random forest (RF), and naïve Bayes (NB). Therefore, our study suggests combining two phases of feature selection into the DDoS attack detection procedure. The first phase uses the information gain (IG) feature selection technique approach, and the second phase uses the principal component analysis (PCA) feature extraction approach. The technique is referred to as two-step feature selection. The test findings indicate that the implementation of two-step feature selection can enhance the performance of the DT and RF detection models by around 9%.
RNN-Based Intrusion Detection System for Internet of Vehicles with IG, PCA, and RF Feature Selection Purnama, Benni; Winanto, Eko Arip; Sharipuddin, Sharipuddin; Sandra, Dodi; Nurhadi, Nurhadi; Afuan, Lasmedi
Jurnal Teknik Informatika (Jutif) Vol. 6 No. 5 (2025): JUTIF Volume 6, Number 5, Oktober 2025
Publisher : Informatika, Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52436/1.jutif.2025.6.5.5293

Abstract

Cyberattacks in the Internet of Vehicles (IoV) threaten road safety and data integrity, requiring intrusion detection systems (IDS) that capture temporal patterns in vehicular traffic. This study develops a Recurrent Neural Network (RNN)-based IDS and evaluates three feature-selection strategies—Information Gain (IG), Principal Component Analysis (PCA), and Random Forest (RF)—on the CICIoV2024 dataset. Features are normalized using Min–Max scaling before being fed into the RNN classifier. The models achieve perfect classification on held-out tests (accuracy/precision/recall/F1 = 1.00). However, probabilistic evaluation reveals low ROC–AUC scores (IG: 0.572, PCA: 0.429, RF: 0.415), indicating limited discriminative margins and potential overfitting or calibration issues despite flawless confusion matrices. PCA and RF further reduce computational overhead during inference compared to IG. These findings highlight that relying solely on accuracy can be misleading for IDS evaluation; temporal RNNs should be complemented with probability-aware training, calibration, or hybrid architectures. This work contributes a temporal-aware IDS framework for IoV and motivates future research on real-time deployment, hybrid RNN-CNN/LSTM models, and adversarial robustness to improve generalization and safety of connected vehicles