Claim Missing Document
Check
Articles

Found 23 Documents
Search

SIFAT-SIFAT DASAR MATRIKS SKEW HERMITIAN Salaka, Lidia; Patty, Henry W. M.; Talakua, Mozart W.
BAREKENG: Jurnal Ilmu Matematika dan Terapan Vol 7 No 2 (2013): BAREKENG : Jurnal Ilmu Matematika dan Terapan
Publisher : PATTIMURA UNIVERSITY

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (442.912 KB) | DOI: 10.30598/barekengvol7iss2pp19-26

Abstract

Matriks didefinisikan sebagai susunan persegi panjang dari elemen-elemen yang diatur dalam baris dan kolom. Matriks dengan elemen-elemen penyusunnya merupakan bilangan kompleks dikenal dengan matriks bilangan kompleks. Salah satu bentuk khusus dari matriks bilangan kompleks adalah matriks Skew Hermitian beserta sifat-sifatnya yang menjadikan matriks tersebut berbeda dengan matriks real. Penelitian ini membahas bagaimana mengetahui bentuk dari matriks Skew Hermitian, serta sifat-sifat aljabar matriks yang berlaku pada matriks Skew Hermitian, dengan tahapan penelitian sebagai berikut: mengubah matriks Hermitian menjadi matriks Skew Hermitian dengan cara mengenakan operasi pergandaan skalar 𝑖 (bilangan imajiner) pada matriks Hermitian, menyusun sifat-sifat dasar matriks Skew Hermitian berdasarkan sifat dan definisi dari elemen-elemen penyusunnya. Hasil penelitian menunjukan bahwa sebuah matriks bujursangkar merupakan matriks Skew Hermitian jika setiap elemen-elemen penyusunnya merupakan bilangan kompleks beserta transpose konjugatnya dan matriks tersebut identik dengan negatif matriks transpose konjugatnya. Keterkaitannya dengan bentuk matriks lainnya juga merupakan suatu sifat yang berlaku pada matriks Skew Hermitian.
IDENTIFIKASI STRUKTUR DASAR SMARANDACHE NEAR-RING Bakarbessy, Yohana Y.; Patty, Henry W. M.; Persulessy, Elvinus R.
BAREKENG: Jurnal Ilmu Matematika dan Terapan Vol 7 No 2 (2013): BAREKENG : Jurnal Ilmu Matematika dan Terapan
Publisher : PATTIMURA UNIVERSITY

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (492.741 KB) | DOI: 10.30598/barekengvol7iss2pp41-46

Abstract

Penelitian ini membahas identifikasi struktur-struktur tersebut melalui definisi dan teorema dengan tahapan sebagai berikut : mengidentifikasi struktur ring dan perkembangannya seperti lapangan, near-ring dan near-field, mengidentifikasi struktur dasar Smarandache near-ring yang dibangun oleh near-ring dengan himpunan bagian sejatinya near-field, mengidentifikasi struktur dasar Smarandache near-ring lainnya berdasarkan perkembangan struktur dasar Smarandache near-ring. Hasil penelitian menunjukkan bahwa struktur Smarandache near-ring dapat juga teridentifikasi lewat himpunan yang merupakan Grup near-ring atas near-field 𝑍2 atau 𝑍𝑝 lainnya.
STRUKTUR KOALJABAR UNIVERSAL DALAM SISTEM STATE-BASED Patty, Henry W. M.
BAREKENG: Jurnal Ilmu Matematika dan Terapan Vol 8 No 1 (2014): BAREKENG : Jurnal Ilmu Matematika dan Terapan
Publisher : PATTIMURA UNIVERSITY

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (804.604 KB) | DOI: 10.30598/barekengvol8iss1pp7-16

Abstract

Konsep koaljabar universal yang merupakan dualitas dari aljabar dapat dipandang sebagai suatu teori dalam sistem state based. Dalam kotak hitam (black boxes), automata dan struktur Kripke yang merupakan contoh sistem state-based, struktur koaljabar merupakan penggabungan dua pemetaan yang membawa suatu state s ke pasangan elemen dari hasil kali tensor dua himpunan.
HASIL KALI LANGSUNG S-NEAR-RING DAN S-NEAR-RING BEBAS Patty, Henry W.
BAREKENG: Jurnal Ilmu Matematika dan Terapan Vol 8 No 2 (2014): BAREKENG : Jurnal Ilmu Matematika dan Terapan
Publisher : PATTIMURA UNIVERSITY

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (489.09 KB) | DOI: 10.30598/barekengvol8iss2pp1-7

Abstract

Hasil kali langsung near-ring Smarandache i I X Ni  dikembangkan dari hasil kali langsung near-ring dengan kondisi khusus jika paling sedikit terdapat satu anggota dari 𝑁𝑖 merupakan near ring Smarandache (S-near-ring). Sedangkan near-ring Smarandache bebas didefinisikan dengan bantuan homomorfisma near-ring Smarandache.
IDENTIFIKASI BASIS GRÖBNER DALAM IDEAL RING POLINOMIAL Romsery, Melky M.; Patty, Henry W. M.; Talakua, Mozart W.
BAREKENG: Jurnal Ilmu Matematika dan Terapan Vol 9 No 1 (2015): BAREKENG : Jurnal Ilmu Matematika dan Terapan
Publisher : PATTIMURA UNIVERSITY

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (551.093 KB) | DOI: 10.30598/barekengvol9iss1pp11-20

Abstract

Dalam suatu ring atau lapangan, dapat didefinisikan suatu polinomial yang koefisien-koefisiennya merupakan elemen dari ring atau lapangan tersebut. 𝑅[𝑋] dan 𝐹[𝑋] merupakan suatu ring yang disebut ring polinomial. Misalkan 𝐼=〈𝑓1,𝑓2,…𝑓𝑠〉⊆𝐹[𝑋], dengan 𝑓𝑖≠0 untuk setiap 𝑖={1,2,3,…,𝑠}. Suatu polinomial 𝑓∈𝐹[𝑋] merupakan elemen di 𝐼 jika 𝑓 dapat ditulis sebagai kombinasi linier dari 𝑓𝑖 yaitu 𝑓𝑖=𝑞1𝑓1+𝑞2𝑓2+⋯+𝑞𝑠𝑓𝑠 dengan 𝑞𝑖∈𝐹[𝑋]. Untuk mengubah 𝑓 menjadi kombinasi linier, maka dapat digunakan algoritma pembagian polinomial bervariabel banyak tetapi dengan syarat sisa pembagian adalah nol. Pada polinomial bervariabel banyak, sisa pembagiannya tidak tunggal tergantung pada urutan 𝑓1,𝑓2,…,𝑓𝑠. Dikatakan tidak tunggal karena jika sisa pembagiannya nol, tetapi setelah merubah urutan 𝑓1,𝑓2,…,𝑓𝑠 akan dihasilkan sisa pembagian yang bukan nol. Oleh karena itu, untuk menyelesaian masalah keanggotaan ideal tersebut, maka harus dicari himpunan pembangun yang lain dari 𝐼 yang disebut basis Gröbner. Basis Gröbner pada 𝐼 adalah himpunan semua polinomial {𝑔1,𝑔2,…,𝑔𝑠} dalam 𝐼 sedemikian sehingga untuk sebarang 𝑓∈𝐼 terdapat 𝐿𝑇(𝑔𝑖) habis membagi 𝐿𝑇(𝑓) dengan 𝑖=1,2,…,𝑠. Dari hasil penelitian dapat disimpulkan bahwa setiap ideal yang merupakan ideal polinomial dalam 𝐹[𝑋] mempunyai basis Gröbner. Untuk mengetahui apakah suatu basis merupakan basis Gröbner maka digunakan kriteria Buchberger. Sedangkan untuk mendapatkan basis Gröbner dari suatu ideal polinomial digunakan algoritma Buchberger.
ANALISIS FAKTOR-FAKTOR YANG MEMPERNGARUHI KANKER LEHER RAHIM DI KOTA AMBON DENGAN MENGGUNAKAN REGRESI LOGISTIK BINER Aulele, Salmon N.; Patty, Henry W. M.; Trisnawaty, Trisnawaty
BAREKENG: Jurnal Ilmu Matematika dan Terapan Vol 10 No 1 (2016): BAREKENG: Jurnal Ilmu Matematika dan Terapan
Publisher : PATTIMURA UNIVERSITY

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (965.3 KB) | DOI: 10.30598/barekengvol10iss1pp61-68

Abstract

Kanker serviks atau kanker leher rahim adalah jenis penyakit kanker yang terjadi pada daerah leher rahim, yaitu bagian rahim yang terletak di bawah yang membuka ke arah liang vagina. Berawal dari leher rahim, apabila telah memasuki tahap lanjut, kanker ini bisa menyebar ke organ-organ lain di seluruh tubuh. Regresi logistik biner merupakan salah satu pendekatan model matematis yang digunakan untuk menganalisis hubungan beberapa faktor dengan sebuah variabel yang bersifat dikotomus (biner). Tujuan dari penelitian ini adalah menentukan faktor-faktor yang mempengaruhi penyebab kanker leher rahim di kota Ambon dengan menggunakan regresi logistik biner. Hasil penelitian menunjukan bahwa faktor-faktor yang mempengaruhi kanker leher rahim di kota Ambon dengan menggunakan regresi logistik biner adalah usia (𝑋1) dan frekuensi menikah (𝑋4) dengan ketepatan pengklasifikasian penderita dan non penderita kanker leher rahim berturut-turut adalah 57,14% dan 66,67%. Secara keseluruhan, model regresi logistik yang telah diperoleh dapat mengklasifikasikan responden sebesar 61,9%.
KAJIAN STRUKTUR SUPERBIMATRIKS Patty, Henry W. M.; Pattipeilohy, Chevano Bill; Wattimena, Abraham Z.
BAREKENG: Jurnal Ilmu Matematika dan Terapan Vol 11 No 1 (2017): BAREKENG: Jurnal Ilmu Matematika dan Terapan
Publisher : PATTIMURA UNIVERSITY

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (267.209 KB) | DOI: 10.30598/barekengvol11iss1pp75-84

Abstract

dimana 𝐴1 ≠ 𝐴2 maka 𝐴1 ∪ 𝐴2 merupakan superbimatriks. Dengan kata lain perpaduan antara dua himpunan supermatriks disebut sebagai superbimatriks. Diberikan beberapa definisi superbimatriks antara lain yaitu superbimatriks baris dan kolom, superbimatriks persegi dan persegi panjang, semi superbimatriks, quasi superbimatriks, transpose superbimatriks, serta superbimatriks simetri dan diperoleh suatu sifat bahwa jika A = A1 ∪ A2 yang merupakan superbivektor kolom maka AAT merupakan superbimatriks simetri.
PENERAPAN ANALISIS JALUR TERHADAP FAKTOR-FAKTOR PENYEBAB ANGKA KEMATIAN BAYI DI PROVINSI MALUKU Kondo Lembang, Ferry; Romer, Christof F.; Patty, Henry W.M.
BAREKENG: Jurnal Ilmu Matematika dan Terapan Vol 12 No 2 (2018): BAREKENG: Jurnal Ilmu Matematika dan Terapan
Publisher : PATTIMURA UNIVERSITY

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (256.478 KB) | DOI: 10.30598/vol12iss2pp069-080ar618

Abstract

Angka Kematian Bayi (AKB) merupakan indikator kualitas pelayanan kesehatan masyarakat dan keberhasilan pembangunan di suatu negara. AKB merupakan kematian anak kurang dari satu tahun. Kematian bayi diukur sebagai tingkat kematian bayi yang merupakan jumlah kematian anak di bawah satu tahun per 1000 kelahiran. Adapun tujuan dari penelitian ini yakni mendapatkan faktor-faktor penyebab AKB di Provinsi Maluku menggunakan metode Analisis Jalur. Hasil analisis penelitian menunjukkan bahwa AKB tertinggi berada diwilayah kota Tual yaitu sebesar 36 per 1000 kelahiran. Selanjutnya variabel eksogen (X) yang berpengaruh terhadap variabel endogen jumlah bayi dengan resiko Berat Badan Lahir Rendah (Y1) untuk model jalur sub struktur I yakni variabel ibu hamil yang diukur Lingkar Lengan Atas (LILA)(X1) dengan nilai |thitung| sebesar 7,251 dimana lebih besar dari nilai ttabel = 2,262, sedangkan untuk model jalur sub struktur II variabel eksogen (X) yang berpengaruh terhadap variabel endogen Persentase AKB tiap kabupaten/kota di Maluku (Y2) yakni variabel jumlah ibu hamil yang diukur LILA (X1), jumlah ibu hamil yang melakukan kunjungan ke puskesmas untuk imunisasi (X2), dan jumlah ibu hamil yang melaksanakan kunjungan ke puskesmas pertama kali saat melahirkan (X3) dimana masing-masing memiliki nilai |thitung| sebesar 2,836; 3,535; dan 2,837lebih besar dari nilai ttabel = 2,262.
PEMILIHAN MODEL TERBAIK PADA ANALISIS REGRESI LINIER MULTIVARIAT DENGAN KRITERIA AIC Noya van Delsen, Marlon S.; Aulele, Salmon Noce; Patty, Henry W. M.; Kelbulan, Natalia
BAREKENG: Jurnal Ilmu Matematika dan Terapan Vol 13 No 1 (2019): BAREKENG: Jurnal Ilmu Matematika dan Terapan
Publisher : PATTIMURA UNIVERSITY

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (169.986 KB) | DOI: 10.30598/barekengvol13iss1pp025-032ar690

Abstract

Kesejahteraan merupakan tujan utama pembangunan sebuah negara. Salah satu aspek penting yang dapat digunakan untuk mengukur tingkat kesejahteraan adalah kualitas fisik penduduk itu sendiri, dua diantaranya adalah angka kematian bayi dan status gizi buruk. Model regresi multivariat adalah model regresi dengan lebih dari satu variabel respon yang saling berkorelasi dan satu atau lebih variabel prediktor. Tujuan dari penelitian ini adalah untuk mengetahui faktor-faktor apa saja yang mempengaruhi angka kematian bayi dan status gizi buruk di Provinsi Maluku dengan menggunakan regresi linier multivariat. Hasil penelitian menunjukan bahwa persentase angka kematian bayi tertinggi yaitu di Kabupaten Maluku Tenggara Barat dan persentase status gizi buruk tertinggi di Kabupaten Kepulauan Aru. Faktor-faktor yang signifikan mempengaruhi angka kematian bayi dan status gizi buruk di Provinsi Maluku dengan menggunakan regresi linier multivariat yaitu persentase ASI Ekslusif (X1), persentase kunjungan ibu hamil ke Puskesmas untuk memeriksa kandungan (X3), persentase jumlah sarana kesehatan (X4) dan persentase penduduk miskin (X5). Model terbaik untuk Y1 dan Y2 diperoleh dengan nilai AIC sebesar 8,440420 dan 0,6999986.
PERAMALAN JUMLAH PENUMPANG PESAWAT TERBANG DI PINTU KEDATANGAN BANDAR UDARA INTERNASIONAL PATTIMURA AMBON DENGAN MENGGUNAKAN METODE ARIMA BOX-JENKINS Hayoto, Sasmita; Lesnussa, Yopi Andry; Patty, Henry W. M.; Djami, Ronald John
BAREKENG: Jurnal Ilmu Matematika dan Terapan Vol 13 No 3 (2019): BAREKENG: Jurnal Ilmu Matematika dan Terapan
Publisher : PATTIMURA UNIVERSITY

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (164.997 KB) | DOI: 10.30598/barekengvol13iss3pp135-144ar883

Abstract

The Autoregressive Integrated Moving Average (ARIMA) model is often used to forecast time series data. In the era of globalization, rapidly progressing times, one of them in the field of transportation. The aircraft is one of the transportation that the residents can use to support their activities, both in business and tourism. The objective of the research is to know the forecasting of the number of passengers of airplanes at the arrival gate of Pattimura Ambon International Airport using ARIMA Box-Jenkins method. The best model selection is ARIMA (0, 1, 3) because it has significant parameter value and MSE value is smaller.