Claim Missing Document
Check
Articles

Found 29 Documents
Search

Sistem Pendukung Keputusan Untuk Pemilihan Supplier Buah Di PT.Indomarco Prismatama Menggunakan Metode Analytical Hierarchy Process Machrus Tohir; Fadhli Almu'iini Ahda; Danang Arbian Sulistyo
Jurnal Ilmiah Teknologi Informasi Asia Vol 16 No 2 (2022): Volume 16 Nomor 2 (8)
Publisher : LP2M INSTITUT TEKNOLOGI DAN BISNIS ASIA MALANG

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32815/jitika.v16i2.629

Abstract

ABSTRAK : Perkembangan pasar yang semakin pesat membuat perusahaan harus mampu bersaing secara global dengan tetap mempertahankan performance. Pemilihan supplier merupakan hal penting untuk menunjang performance perusahaan, karena pemilihan supplier yang tidak tepat dapat menyebabkan Kerugian dan menurunya service level yang diakibatkan stock out perusahaan. Penilitian ini bertujuan untuk memilih supplier terbaik dengan cara menyeleksi supplier berdasarkan kriteria dan subkriteria yang sesuai. Penelitian ini dilakukan di PT.Indomarco Prismatama dengan mengambil objek Merchandiser dan departemen buah. Sistem pendukung keputusan dengan metode Analytical Hierarchy Process yang digunakan untuk mendapatkan bobot-bobot kriteria supplier. Hasil yang didapatkan setelah melakukan pengujian perbandingan antara system dan reality didapatkan hasil menggunakan system jauh lebih baik dalam memilih supplier terbaik. Dan sistem ini hanya sebuah media yang bisa digunakan untuk merekomendasikan pilihan kepada pimpinan.
Pembuatan Infrastruktur Database Menggunakan Metode Replikasi Untuk Pelanggan Jagoan Hosting Sulthan Shidqi; Danang Arbian Sulistyo; Fadhli Almu’iini Ahda
Jurnal Ilmiah Teknologi Informasi Asia Vol 16 No 1 (2022): Volume 16 Nomor 1 (8)
Publisher : LP2M INSTITUT TEKNOLOGI DAN BISNIS ASIA MALANG

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32815/jitika.v16i1.702

Abstract

ABSTRAK Penelitian ini membahas penggunaan dan penerapan cluster database untuk mengurangi dampak buruk pada website akibat server mengalami downtime, sehingga dapat tetap menjaga trafik pengunjung yang sedang beraktivitas pada website. Pada penelitian ini akan dilakukan implementasi perancangan cluster database dan pengujian hasil dari implemetasi cluster database pada server. Dari hasil tes tersebut akan ditemukan dampak yang ditimbulkan dengan adanya cluster database pada server supaya dapat digunakan sebagai refrensi pada pembuatan infrastruktur sebuah website. Dalam pengujian program dilakukan dengan membandingkan dari hasil system sebelum dilakukan implementasi cluster dan setelah dilakukan implementasi cluster. Dalam uji coba yang telah dilakukan mencapai hasil yang sesuai tidak terjadi downtime pada akses website apabila terjadi kegagalan pada salah satu server database. Dari hasil tersebut menunjukan bahwa cluster database berfungsi dengan baik dalam menjaga uptime website yang ada. Kata kunci: Cluster, Database, Infrastruktur, Website
An enhanced pivot-based neural machine translation for low-resource languages Sulistyo, Danang Arbian; Wibawa, Aji Prasetya; Prasetya, Didik Dwi; Ahda, Fadhli Almuíini
International Journal of Advances in Intelligent Informatics Vol 11, No 2 (2025): May 2025
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26555/ijain.v11i2.2115

Abstract

This study examines the efficacy of employing Indonesian as an intermediary language to improve the quality of translations from Javanese to Madurese through a pivot-based approach utilizing neural machine translation (NMT). The principal objective of this research is to enhance translation precision and uniformity among these low-resource languages, hence advancing machine translation models for underrepresented languages. The data collecting approach entailed extracting parallel texts from internet sources, followed by pre-processing through tokenization, normalization, and stop-word elimination algorithms. The prepared datasets were utilized to train and assess the NMT models. An intermediary phase utilizing Indonesian is implemented in the translation process to enhance the accuracy and consistency of translations between Javanese and Madurese. Parallel text corpora were created by collecting and preprocessing data, thereafter, utilized to train and assess the NMT models. The pivot-based strategy regularly surpassed direct translation regarding BLEU scores for all n-grams (BLEU-1 to BLEU-4). The enhanced BLEU ratings signify increased precision in vocabulary selection, preservation of context, and overall comprehensibility. This study significantly enhances the current literature in machine translation and computational linguistics, especially for low-resource languages, by illustrating the practical effectiveness of a pivot-based method for augmenting translation precision. The method's dependability and efficacy in producing genuine translations were proved through numerous studies. The pivot-based technique enhances translation quality, although it possesses limitations, including the risk of error propagation and bias originating from the pivot language. Further research is necessary to examine the integration of named entity recognition (NER) to improve accuracy and optimize the intermediate translation process. This project advances the domains of machine translation and the preservation of low-resource languages, with practical implications for multilingual communities, language education resources, and cultural conservation.
Minangkabau Language Stemming: A New Approach with Modified Enhanced Confix Stripping Ahda, Fadhli Almu'iini; Aji Prasetya Wibawa; Didik Dwi Prasetya; Danang Arbian Sulistyo; Andrew Nafalski
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol 9 No 3 (2025): June 2025
Publisher : Ikatan Ahli Informatika Indonesia (IAII)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29207/resti.v9i3.6511

Abstract

Stemming is an essential procedure in natural language processing (NLP), which involves reducing words to their root forms by eliminating affixes, including prefixes, infixes, and suffixes. The employed method assesses the efficacy of stemming, which differs according to language. Complex affixation patterns in Indonesian and regional languages such as Minangkabau pose considerable difficulties for traditional algorithms. This research adopts the enhanced fixed-stripping method to tackle these issues by integrating linguistic characteristics unique to Minangkabau. This study has three phases: data acquisition, pseudocode development, and algorithm execution. Testing revealed an average accuracy of 77.8%, indicating the algorithm's proficiency in managing Minangkabau’s intricate morphology. Nevertheless, constraints persist, particularly with irregular affixation patterns. Possible improvements could include adding more datasets, improving the rules for handling affixes, and using machine learning to make the system more flexible and accurate. This study emphasizes the significance of customized solutions for regional languages and provides insights into the advancement of NLP in various linguistic environments. The findings underscore the progress made in processing Minangkabau text while also emphasizing the need for further research to address current issues.
Multilingual Parallel Corpus for Indonesian Low-Resource Languages Sulistyo, Danang Arbian; Wibawa, Aji Prasetya; Prasetya, Didik Dwi; Ahda, Fadhli Almu’iini; Arya Astawa, I Nyoman Gede; Andika Dwiyanto, Felix
JOIV : International Journal on Informatics Visualization Vol 9, No 5 (2025)
Publisher : Society of Visual Informatics

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62527/joiv.9.5.3412

Abstract

Indonesia has an extraordinary number of languages, with more than 700 regional languages such as Javanese, Madurese, Balinese, Sundanese, and Bugis. Despite the wealth of languages, digital resources for these languages remain scarce, making the preservation and accessibility of digital languages a significant challenge. Research was conducted to address this gap by building a multilingual parallel corpus consisting of more than 150,000 phrase pairs extracted from Bible translations in five regional languages in Indonesia. Rigorous preprocessing, normalization, and Unicode tokenization were performed to improve data quality and consistency. The encoder-decoder architecture was a key focus in the development of the NMT model. Evaluation focused on forward and backward translation directions, which were measured using BLEU scores. The results show that forward translation consistently outperforms backward translation. The Indonesian Javanese model produced a score of 0.9939 for BLEU-1 and 0.9844 for BLEU-4, indicating a high level of translation quality. In contrast, reverse translation tasks, such as translating from Sundanese to Indonesian, presented significant challenges, with BLEU-4 scores as low as 0.3173. This illustrates the complexity of the translation system from Indonesian to local languages. If future research focuses on transformer-based models and incorporates additional linguistic parameters to enhance the accuracy of natural language processing (NLP) models for Indonesia's underrepresented regional languages, this work provides a dataset that can be utilized for that purpose.
Empowering Low-Resource Languages: Javanese Machine Translation Sulistyo, Danang Arbian; Aji Prasetya Wibawa; Wayan Firdaus Mahmudy; Fadhli Almu’iini Ahda; Andrew Nafalski
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol 9 No 5 (2025): October 2025
Publisher : Ikatan Ahli Informatika Indonesia (IAII)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29207/resti.v9i5.6887

Abstract

This study addresses the critical need to preserve and revitalize the Javanese language, which despite its widespread popularity, faces challenges as a low-resource language in Indonesia. The decline in Javanese proficiency among younger generations poses a significant threat to the language's cultural significance and heritage. To address this issue, this study introduces an innovative approach to machine translation, focusing on the development of a robust Indonesian-Javanese translation system. Utilizing advanced neural machine translation (NMT) techniques, including Long Short-Term Memory (LSTM) networks, the proposed system aims to bridge the linguistic gap between Indonesian and Javanese. Special attention was given to the unique linguistic characteristics and challenges of Javanese, with the goal of achieving exceptional translation accuracy and fluency. Through extensive experimentation and evaluation, this study aims to demonstrate the effectiveness of the translation system in facilitating cross-cultural communication and language preservation efforts within the Javanese-speaking community. By emphasizing the significance of Javanese as a widely spoken yet under-resourced language, this study underscores the importance of innovative technological solutions in safeguarding linguistic diversity and cultural heritage. Through its contributions, the research seeks to address the pressing need for language preservation and revitalization, particularly in the context of low-resource languages like Javanese.
Penerapan Metode Hybrid FIS Tsukamoto dan Algoritma Genetika untuk Prediksi Curah Hujan di Daerah Batu Wahyuni, Ida; Ahda, Fadhli Almu'iini; Adipraja, Philip Faster Eka
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 5 No 4: Agustus 2018
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (507.61 KB) | DOI: 10.25126/jtiik.201854836

Abstract

Curah hujan yang semakin tidak menentu memberikan efek yang cukup signifikan pada bidang pertanian dan perkebunan. Salah satu bidang perkebunan yang memanfaatkan pola curah hujan adalah perkebunan apel. Petani apel membutuhkan perhitungan curah hujan untuk menentukan kapan proses pembungaan yang tepat agar hasil panen yang di dapatkan bisa maksimal. Namun, karena tidak menentunya pola curah hujan, petani menjadi kesulitan dalam menentukan waktu pembungaan dan panen apel menjadi tidak maksimal. Pada penelitian ini dibuat sebuah pemodelan yang paling optimal dalam memprediksi curah hujan di daerah Batu, Jawa Timur menggunakan metode hybrid FIS Tsukamoto dan algoritma genetika. Metode hybrid yang dilakukan adalah mengoptimasi batasan fungsi keanggotaan FIS Tsukamoto menggunakan algoritma genetika. Setelah proses pengujian, penerapan metode Metode hybrid FIS Tsukamoto dan algoritma genetika dapat digunakan untuk memprediksi curah hujan dengan nilai error RMSE lebih kecil dibandingkan dengan FIS Tsukamoto tanpa optimasi. Nilai error RMSE pada daerah Junggo sebesar 6.485, pada daerah Pujon sebesar 6.932, pada daerah Tinjomulyo sebesar 5.969, pada daerah Ngujung sebesar 5.498. AbstractThe erratic rainfall has a significant effect on agriculture and plantations. One area of plantations that utilizes rainfall patterns is apple plantations. Apple farmers need rainfall calculations to determine when the flowering process is right so that the yield can be maximized. However, due to the uncertainty of rainfall patterns, farmers have difficulty in determining the time of flowering and harvesting apples to be not optimal. In this study, the most optimal modeling was used to predict rainfall in the Batu area, East Java using the hybrid FIS Tsukamoto method and genetic algorithm. The hybrid method used is to optimize the boundary function of Tsukamoto's FIS membership using a genetic algorithm. After the testing process, the application of the hybrid method of the Tsukamoto FIS method and the genetic algorithm can be used to predict rainfall with a smaller RMSE error compared to the FIS Tsukamoto without optimization. RMSE error value in Junggo area is 6,485, in Pujon area is 6,932, in Tinjomulyo area is 5,969, in Ngujung area is 5,498.
Perancangan dan Pembuatan Website Majelis Ulama Indonesia Kota Batu Malang Farokhah, Lia; Noercholis, Achmad; Ahda, Fadhli Almu’iini; Sulistyo, Danang Arbian; Rofiq, Muhammad
Prima Abdika: Jurnal Pengabdian Masyarakat Vol. 4 No. 1 (2024): Volume 4 Nomor 1 Tahun 2024
Publisher : Program Studi Pendidikan Guru Sekolah Dasar Universitas Flores Ende

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.37478/abdika.v4i1.3746

Abstract

Community service is one of the activities required for lecturers at Institut Teknologi dan Bisnis ASIA Malang every semester. This activity is carried out in groups to distribute knowledge to the community. This activity is in partnership with the Batu City MUI in creating a digital website for distribution of information to the wider community. Problems arise when a partner's website is hacked or damaged by a hacker. The service team wanted to teach how to recover or mitigate after damage, but the technical team could not provide information regarding the website and suggested creating a new website. In the initial stage, this service will create a new website. The method of this service approach is to carry out discussions in group discussion forums (FGD). The results of the discussion were realized in the form of a website for the Batu City MUI. Evaluations were carried out regarding design and functionality requirements. The partners are satisfied but it must be developed further. In ongoing collaboration this website will continue to be developed. After that, training in mitigating data when exposed to hackers will be carried out in the next service.
Comparison of Adam Optimization and RMS prop in Minangkabau-Indonesian Bidirectional Translation with Neural Machine Translation Ahda, Fadhli Almu'iini; Wibawa, Aji Prasetya; Dwi Prasetya, Didik; Arbian Sulistyo, Danang
JOIV : International Journal on Informatics Visualization Vol 8, No 1 (2024)
Publisher : Society of Visual Informatics

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62527/joiv.8.1.1818

Abstract

Language is a tool humans use to establish communication. Still, the language used is one language and between regions or nations with their languages. Indonesia is a country that has a diversity of second languages and is the fourth most populous country in the world. It is recorded that Indonesia has nearly 800 regional languages, but research activities in natural language processing are still lacking. Minangkabau is an endangered language spoken by the Minangkabau people in Indonesia's West Sumatra province. According to UNESCO, the Minangkabau language is listed as a language that is "definitely endangered," with only around 5 million speakers worldwide. This study uses neural machine translation (NMT) to create a formula based on this information. Neural machine translation, in contrast to conventional statistical machine translation, intends to build a single neural network that can be built up to achieve the best performance. Because it can simultaneously hold memory for a long time, comprehend complicated relationships in data, and provide information that is very important in determining the outcome of translation, LSTM is one of the most powerful machine-learning techniques for translating languages. The BLUE score is utilized in the NMT evaluation. The test results use 520 Minangkabau sentences, conducting tests based on the number of epochs ranging from 100-1000, resulting in optimization using Adam being better than optimization RMSprop. This is evidenced by the results of the best BLUE-1 score of 0.997816 using 1000 epochs.