Claim Missing Document
Check
Articles

Found 3 Documents
Search

Prediction of Behavioral Patterns of Number Students Using Artificial Neural Networks. Endah Nurjanah; Dyah Nur Rochmah; Bagus Wirawan
Mulia International Journal in Science and Technical Vol 1 No 2 (2018): December
Publisher : Universitas Mulia

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

This study aims to predict student behavior patterns so they can predict based on the number of students. To achieve optimal results, this study uses Artificial Neural Networks with the Backpropagation method. A case study was conducted at the Faculty of Computer Science, X University. The data used is data on the number of students in the academic year two years ago as training data and the school year data is two years after that as testing data. Furthermore, the data are analyzed with several network architecture patterns, and the best design will be chosen to be implemented into the Matlab program. The system results show a correlation between the number of students that occur.
PENGARUH MODEL PEMBELAJARAN KOOPERATIF TGT (TEAMS GAMES TOURNAMENTS) TERHADAP HASIL BELAJAR IPA KELAS V DI SDN CITEREUP 01 Endah Nurjanah; Siti Pupu Fauziah; Annisa Mawardini
AL - KAFF: JURNAL SOSIAL HUMANIORA Vol. 2 No. 4 (2019): APRIL
Publisher : Fakultas Agama Islam dan Pendidikan Guru

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Penelitian ini dilatarbelakangi pada kenyataan yang ditemui di kelas V SDN Citereup 01. Masalah yang ditemui adalah Pembelajaran IPA lebih cenderung menerapkan model pembelajaran konvensional, model pembelajaran kooperatif juga jarang digunakan di Sekolah SDN Citereup 01, Nilai IPA sebagian besar peserta didik masih di bawah KKM.Penelitian ini mempunyai tujuan untuk dapat memahami  keterkaitan antara metode yang diterapkan oleh peneliti dengan pencapaian belajar IPA V SDN Citereup 01,setelah mengetahui atau memahami tujuan secara bersama dengan anggota grup yang lain  dan percobaan penelitian ini dilaksanakan di SDN Citereup 01, Kecamatan Citereup, Kabupaten Bogor. Penelitian ini penelitian eksperimen dengan desain Quasi Experimental Design. Subjek siswa Kelas V SDN Citereup yaitu sebanyak 50 siswa dari dua kelas. Menggunakan teknik interview, percobaan, dan pengumpulan berkas.Hasil akhir penelitian t-test pada ilmu pengetahuan alam  nilai signifikansi 0,095>0,05. Berlandaskan hitungan eksplorasi bisa ditarik sebuah pengertian yaitu metode pengkajian TGT  Tidak Berpengaruh Terhadap Hasil Belajar IPA Kelas V SDN Citereup 01.
DEVELOPMENT OF AN EXPERT SYSTEM FOR DIAGNOSING RICE PLANT DISEASES USING FORWARD CHAINING METHOD Endah Nurjanah
REKADATA Vol. 1 No. 1 (2025): REKADATA (Rekayasa Data dan Kecerdasan Artifisial)
Publisher : CV Mazaya Cahaya Utama

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

This study presents the development of an expert system for diagnosing rice plant diseases using the forward chaining method. Rice is the staple food for most of the Indonesian population, and plant diseases significantly reduce productivity. Farmers often face difficulties in identifying diseases due to limited agricultural knowledge and lack of experts in the field. The proposed system was designed to assist farmers in diagnosing rice diseases based on symptoms entered into the system. The forward chaining inference technique was implemented to match symptoms with disease rules in a knowledge base. The system was tested using several common rice diseases such as blast, bacterial leaf blight, tungro virus, and brown spot. Results show that the system can accurately provide disease diagnosis recommendations with clear explanation facilities. The novelty of this research lies in the application of a simple but effective reasoning method combined with a user-friendly interface for farmers. This study concludes that the system can be used as an alternative decision support tool for early disease detection in rice plants.