Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : JOIV : International Journal on Informatics Visualization

A Framework of Mutual Information Kullback-Leibler Divergence based for Clustering Categorical Data Iwan Tri Riyadi Yanto; Ririn Setiyowati; Nur Azizah; - Rasyidah
JOIV : International Journal on Informatics Visualization Vol 5, No 1 (2021)
Publisher : Politeknik Negeri Padang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30630/joiv.5.1.462

Abstract

Clustering is a process of grouping a set of objects into multiple clusters, so that the collection of similar objects will be grouped into the same cluster and dissimilar objects will be grouped into other clusters. Fuzzy k-means Algorithm is one of clustering algorithm by partitioning data into k clusters employing Euclidean distance as a distance function. This research discusses clustering categorical data using Fuzzy k-Means Kullback-Leibler Divergence. In the determination of the distance between data and center of cluster uses mutual information known as Kullback-Leibler Divergence distance between the joint distribution and the product distribution from two marginal distributions. Extensive theoretical analysis was performed to show the effectiveness of the proposed method. Moreover, the proposed method's comparison results with Fuzzy Centroid and Fuzzy k-Partition approaches in terms of response time and clustering accuracy were also performed employing several datasets from UCI Machine Learning. The experiment results show that the proposed Algorithm provides good results both from clustering quality and accuracy for clustering categorical data as compared to Fuzzy Centroid and Fuzzy k-Partition.
Laying Chicken Algorithm (LCA) Based For Clustering Iwan Tri Riyadi Yanto; Ririn Setiyowati; Nursyiva Irsalinda; - Rasyidah; Tri Lestari
JOIV : International Journal on Informatics Visualization Vol 4, No 4 (2020)
Publisher : Society of Visual Informatics

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30630/joiv.4.4.467

Abstract

Numerous research and related applications of fuzzy clustering are still interesting and important. In this paper, Fuzzy C-Means (FCM) and Laying Chicken Algorithm (LCA) were modified to improve local optimum of Fuzzy Clustering presented by using UCI dataset. In this study, the proposed FCMLCA performance was also compared to baseline technique based on CSO methods. The simulation results indicate that the FCMLCA method have better performance than the compared methods.