Claim Missing Document
Check
Articles

Found 3 Documents
Search

Produksi Asam Laktat Melalui Jalur Biologi dan Jalur Kimia Katalitik Menggunakan Berbagai Bahan Baku Aini, Apsari Puspita; Nurmalasari, Enny; Rasrendra, Carolus Borromeus; Sitompul, Johnner
Eksergi Vol 20, No 3 (2023)
Publisher : Prodi Teknik Kimia, Fakultas Teknologi Industri, UPN "Veteran" Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31315/e.v20i3.9768

Abstract

Aplikasi asam laktat pada berbagai industri menarik minat para peneliti untuk memproduksi asam laktat melalui berbagai jalur reaksi. Perolehan isomer asam lakat yang lebih murni dibandingkan dengan jalur reaksi kimia katalitik menjadikan jalur biologi dengan fermentasi menjadi jalur reaksi yang banyak dipakai di industri. Berbagai mikroorganisme pada golongan Lactic Acid Bacteria telah digunakan untuk memproduksi asam laktat baik dalam skala laboratorium maupun skala industri. Berbagai bahan baku dapat dikonversi menjadi asam laktat seperti, dihidroksi aseton, gliseraldehid, piruvaldehid, xilosa, glukosa, fruktosa, sukrosa, selulosa, insulin, selobiosa, pati, levoglukosan dan lignoselulosa. Kemampuan katalis dalam metode kimiawi menarik banyak minat peneliti untuk mencari alternatif pembuatan asam laktat yang bisa mengkonversi gula menjadi asam laktat dengan waktu reaksi yang lebih singkat. Penggunaan berbagai katalis mulai dari katalis homogen dan heterogen terbukti dapat menghasilkan asam laktat dengan yield yang bervariasi. Katalis lanthanum triflate terlihat menghasilkan asam laktat dengan perolehan yang baik walaupun dari bahan baku lignoselulosa yang perlu perlakuan awal terlebih dahulu karena mempunyai senyawa lignin yang bisa menghalangi kerja katalis.Kata Kunci: asam laktat; kimia katalitik; fermentasi; lignoselulosa  ABSTRACT: The utilization of lactic acid for various applications encourages researchers to produce lactic acid by various reaction pathways. The yield of lactic acid isomer which is purer than the catalytic chemical reaction makes the biological pathway by fermentation widely used in industry. Various microorganisms in the Lactic Acid Bacteria categories have been used to produce lactic acid both on a laboratory and industrial scale. Various raw materials can be converted into lactic acid such as dihydroxy acetone, glyceraldehyde, pyruvaldehyde, xylose, glucose, fructose, sucrose, cellulose, insulin, cellobiose, starch, levoglucosan and lignocellulose. The ability of catalyst has attracted interest of researcher to find alternatives for making lactic acid that can convert sugar into lactic acid with a shorter reaction time. The use of various catalysts from homogeneous and heterogeneous catalysts has been proven to produce lactic acid with varying results. The lanthanum triflate catalyst proven to produce lactic acid with a high yield, even though it is from lignocellulosic raw materials that need pre-treatment to remove lignin compounds which can inhibit the performance of the catalyst.Keywords: lactic acid; chemical catalytic; fermentation;  lignocellulose  
Investigation of the Effect of Silica and Phosphorus Content on the Performance of Active Matrix as Component of Cracking Catalyst Gunawan, Melia Laniwati; Rasrendra, Carolus Borromeus; Widikrama, Candra Lutfi; Kurniawan, Rizky Gilang; Nisa, Lita Marina; Hudaya, Farhansyah Yusuf Putra; Makertihartha, I G. B. N.; Subagjo, Subagjo
Journal of Engineering and Technological Sciences Vol. 56 No. 2 (2024)
Publisher : Directorate for Research and Community Services, Institut Teknologi Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5614/j.eng.technol.sci.2024.56.2.3

Abstract

Fluid catalytic cracking (FCC) is a technique that converts heavy-fraction feed into fuel. The FCC catalyst components consist of a composite material made of zeolite, filler, binder, and an active matrix. The active matrix is used as a pre-cracker for the heavy-fraction feed. This study examined the impact of the Si/Al ratio and the addition of phosphorus on the physical properties and activity of the active matrix. The synthesis technique refers to US patent 6723297 B2. The utilized variants consisted of SiO2 ranging from 50 to 80 weight percent and a phosphorous addition ranging from 1 to 2 weight percent. The physical characteristics of the active matrix were assessed using nitrogen physisorption and NH3-Temperature programmed adsorption/desorption techniques. A chemical activity test was conducted using the micro activity test (MAT) method, with vacuum gas oil (VGO) as the feedstock. This test was done in accordance with the ASTM D 5154 – 03 standard. The results indicated that the silica composition in the active matrix is directly related to the average pore diameter but inversely related to the specific surface area. Additionally, the inclusion of phosphorus had a similar impact. The silica-alumina-phosphorous variant containing 75%-wt of SiO2 exhibited the most superior active matrix activity, achieving the maximum acquisition of light cycle oil (LCO) at 33%-wt.
Produksi Asam Laktat Melalui Jalur Biologi dan Jalur Kimia Katalitik Menggunakan Berbagai Bahan Baku Aini, Apsari Puspita; Nurmalasari, Enny; Rasrendra, Carolus Borromeus; Sitompul, Johnner
Eksergi Vol 20 No 3 (2023)
Publisher : Prodi Teknik Kimia, Fakultas Teknik Industri, UPN "Veteran" Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31315/e.v20i3.9768

Abstract

Aplikasi asam laktat pada berbagai industri menarik minat para peneliti untuk memproduksi asam laktat melalui berbagai jalur reaksi. Perolehan isomer asam lakat yang lebih murni dibandingkan dengan jalur reaksi kimia katalitik menjadikan jalur biologi dengan fermentasi menjadi jalur reaksi yang banyak dipakai di industri. Berbagai mikroorganisme pada golongan Lactic Acid Bacteria telah digunakan untuk memproduksi asam laktat baik dalam skala laboratorium maupun skala industri. Berbagai bahan baku dapat dikonversi menjadi asam laktat seperti, dihidroksi aseton, gliseraldehid, piruvaldehid, xilosa, glukosa, fruktosa, sukrosa, selulosa, insulin, selobiosa, pati, levoglukosan dan lignoselulosa. Kemampuan katalis dalam metode kimiawi menarik banyak minat peneliti untuk mencari alternatif pembuatan asam laktat yang bisa mengkonversi gula menjadi asam laktat dengan waktu reaksi yang lebih singkat. Penggunaan berbagai katalis mulai dari katalis homogen dan heterogen terbukti dapat menghasilkan asam laktat dengan yield yang bervariasi. Katalis lanthanum triflate terlihat menghasilkan asam laktat dengan perolehan yang baik walaupun dari bahan baku lignoselulosa yang perlu perlakuan awal terlebih dahulu karena mempunyai senyawa lignin yang bisa menghalangi kerja katalis.Kata Kunci: asam laktat; kimia katalitik; fermentasi; lignoselulosa  ABSTRACT: The utilization of lactic acid for various applications encourages researchers to produce lactic acid by various reaction pathways. The yield of lactic acid isomer which is purer than the catalytic chemical reaction makes the biological pathway by fermentation widely used in industry. Various microorganisms in the Lactic Acid Bacteria categories have been used to produce lactic acid both on a laboratory and industrial scale. Various raw materials can be converted into lactic acid such as dihydroxy acetone, glyceraldehyde, pyruvaldehyde, xylose, glucose, fructose, sucrose, cellulose, insulin, cellobiose, starch, levoglucosan and lignocellulose. The ability of catalyst has attracted interest of researcher to find alternatives for making lactic acid that can convert sugar into lactic acid with a shorter reaction time. The use of various catalysts from homogeneous and heterogeneous catalysts has been proven to produce lactic acid with varying results. The lanthanum triflate catalyst proven to produce lactic acid with a high yield, even though it is from lignocellulosic raw materials that need pre-treatment to remove lignin compounds which can inhibit the performance of the catalyst.Keywords: lactic acid; chemical catalytic; fermentation;  lignocellulose