Atmadji, Ery Setiyawan Jullev
Unknown Affiliation

Published : 3 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 3 Documents
Search

Media Pembelajaran Pengenalan Buah (Fruits Zone) untuk Anak KB Menggunakan Deep Learning KOMARIAH, SITI INGEFATUL; PUTRI, DESTI FITRI AISYAH; PERMATASARI, INTAN; FITRI, ZILVANHISNA EMKA; ATMADJI, ERY SETIYAWAN JULLEV; WIDIASTUTI, RESKI YULINA; IMRON, ARIZAL MUJIBTAMALA NANDA
MIND (Multimedia Artificial Intelligent Networking Database) Journal Vol 9, No 1 (2024): MIND Journal
Publisher : Institut Teknologi Nasional Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26760/mindjournal.v9i1.13-24

Abstract

ABSTRAK Keterbatasan media pembelajaran dan metode pembelajaran yang masih terpusat pada kemampuan guru menjadi kendala bagi Pos Alamanda 105 Jumerto, Jember. Dibutuhkan sebuah media pembelajaran yang interaktif dan dapat diakses dimanapun untuk meningkatkan kemampuan siswa khususnya dalam pengenalan buah. Solusinya, peneliti mengembangkan media pembelajaran interaktif pengenalan buah pada anak usia dini. Metode yang digunakan adalah Deep Learning (CNN) dengan arsitektur yaitu Resnet18. Arsitektur Resnet-18 dipilih karena tidak menghilangkan gradien dan fitur citra meski layer yang digunakan semakin dalam, sehingga connected layer dapat mengenali objek dengan akurat. Penelitian ini menggunakan 21 jenis buah populer dan buah unik yang dilengkapi fitur suara berbahasa Indonesia dan Bahasa Inggris. Jumlah data sebanyak 2100 citra buah dengan learning rate sebesar 0.0002 dan maksimal epoch sebesar 100 mampu mengklasifikasikan buah dengan tingkat akurasi sebesar 96% (pelatihan sistem) dan 95% (pengujian sistem). Kata Kunci: Media Pembelajaran, Fruits Zone , Deep Learning, ResNet18 ABSTRACT Limitations in learning media and teaching methods that are still centered on teachers' abilities pose challenges for Pos Alamanda 105 in Jumerto, Jember. An interactive learning media accessible anywhere is needed to enhance students' abilities, especially in fruit recognition. The solution is researchers developing an interactive early childhood fruit recognition learning media. The method used is Deep Learning (CNN) with the Resnet18 architecture. Resnet-18 architecture is chosen because it preserves gradients and image features even as the layers go deeper, allowing the connected layer to accurately recognize objects. This study covers 21 popular and unique fruits with voice features in Indonesian and English. With 2100 fruit images, a learning rate of 0.0002, and a maximum epoch of 100, the system achieves a classification accuracy of 96% (training) and 95% (testing).Keywords: Learning Media, Fruits Zone , Deep Learning, ResNet18
UMKM Empowerment Through E-Content Development and Strategic Marketing Communication Training in Economic Digitalization Efforts for UMKM Batik Tamanan Bondowoso Regency Setyo Wibowo, Nugroho; Sugiartono, Endro; Widianta, Moh. Muniha Dian; Atmadji, Ery Setiyawan Jullev
J-Dinamika : Jurnal Pengabdian Masyarakat Vol 9 No 3 (2024): Desember
Publisher : Politeknik Negeri Jember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25047/j-dinamika.v9i3.5478

Abstract

Micro, Small and Medium Enterprises (UMKM) in Bondowoso Regency have an important role in economic growth and regional business development. To empower and improve the quality of UMKM in Bondowoso Regency, an UMKM empowerment program is carried out through E-Content Development and Strategic Marketing Communication skills training which can help Ijen Batik Tamanan UMKM in Bondowoso Regency in overcoming the challenges of digitalization and improving and expanding marketing. Economic digitalization plays an important role in accelerating the growth of Batik UMKM. Through the application of digital technology, UMKM can increase the visibility of their products online, reach a wider market, and strengthen interactions with customers through digital platforms and social media. Digitalization also opens up new opportunities to improve operational efficiency and management of UMKM businesses. UMKM can also understand how to develop effective and targeted marketing strategies to reach a wider range of consumers.
The Use of Naive Bayes Classifier in Sentiment Analysis at Indonesia's Super Priority Tourism Destinations Based on User Reviews Atmadji, Ery Setiyawan Jullev; Wabula, Yuyun; Karsanti, Hayuning Titi; Kristopher, Kristopher
Jurnal Sosioteknologi Vol. 24 No. 2 (2025): JULY 2025
Publisher : Fakultas Seni Rupa dan Desain ITB

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5614/sostek.itbj.2025.24.2.7

Abstract

This study aims to develop a digital technology-based evaluation platform to support Indonesia’s super priority tourism destination (DPSP) program. The platform utilizes tourist review data obtained from Google Maps, which is processed using sentiment analysis based on the Naïve Bayes algorithm and scraping techniques. By collecting and analyzing data in real time, this research provides accurate and relevant information about tourist opinions regarding tourism destinations. The implementation of this system is expected to enhance the effectiveness of tourism destination evaluations and support data-driven decision-making. The test result shows a model accuracy of 75%, with tourist reviews classified into positive, negative, and neutral classes. Further development is recommended to add more data sources and improve model accuracy.