Claim Missing Document
Check
Articles

Found 22 Documents
Search

Efficient Thoracic Abnormalities Detection Using Mobile Deep Learning Models Bauravindah, Achmad; Fudholi, Dhomas Hatta; Wahyuningrum, Rima Tri
Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control Vol. 10, No. 3, August 2025
Publisher : Universitas Muhammadiyah Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22219/kinetik.v10i3.2268

Abstract

Indonesia faces a critical shortage of radiologists, with only 1.2 radiologists per 100,000 individuals. This shortage leads to delays in diagnosing thoracic abnormalities such as pneumothorax, cardiomegaly, nodule/mass, consolidation, and infiltration. Chest X-ray (CXR) interpretation remains challenging due to overlapping radiological features, necessitating AI-assisted solutions. This study evaluates three lightweight deep learning models—MobileNetV2, ShuffleNetV2, and EfficientNetB0—for automated thoracic abnormality detection using the ChestX-ray8 dataset. We assessed model performance using accuracy, precision, recall, F1-score, and AUC-ROC, selecting the best model based on the highest per-fold F1-score. EfficientNetB0 emerged as the top-performing model, achieving a macro-average F1-score of 0.556 and AUC-ROC of 0.765, outperforming MobileNetV2 (0.494, 0.719) and ShuffleNetV2 (0.481, 0.713). Grad-CAM analysis revealed strong localization for pneumothorax and consolidation but misclassifications in cardiomegaly and nodule/mass detection due to poor feature differentiation. The findings highlight EfficientNetB0’s potential as an AI-assisted diagnostic tool for low-resource settings while also underscoring the need for segmentation-based pretraining and multi-scale feature extraction to enhance detection accuracy. Future work should focus on optimizing sensitivity to subtle abnormalities and ensuring clinical trust through improved interpretability techniques.
Segmentasi Citra X-Ray Dada Menggunakan Metode Modifikasi Deeplabv3+ Wahyuningrum, Rima Tri; Jannah, Maughfirotul; Satoto, Budi Dwi; Sari, Amillia Kartika; Sensusiati, Anggraini Dwi
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 10 No 3: Juni 2023
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25126/jtiik.2023106754

Abstract

COVID-19 is a disease that affects the human respiratory system. The latest developments in September 2022 the number of confirmed cases of COVID-19 worldwide reached 608,328,548 with 6,501,469 patients who died. While in Indonesia confirmed COVID-19 reached 6,408,806 with 157,892 patients who died. Reserve Transcription Polymerase Chain Reaction (RT-PCR) is the most widely used tool. However, the latest RT-PCR test report shows that the RT-PCR test is inadequate. As an alternative, radiographic images such as chest x-rays and CT scans can help detect this. Radiographic images, especially x-rays, need processing to be able to make a diagnosis. Computer Aided Diagnosis (CAD) is a computer assisted diagnosis system that can be used as supporting information in making a diagnosis. To make it easier to make a diagnosis, we need a deep learning model that can help with this. DeepLabV3+ is a method that can carry out the segmentation process. DeepLabV3+ which is an extension of DeepLabV3 with the aim of improving the segmentation results. DeepLabV3+ uses a modified Xception as the backbone. In this study, 1,500 chest x-ray image data were used which were then divided into 80% for training data and 20% for testing data. There are 4 test scenarios in this study, namely with a learning rate of 0.01 without CLAHE, a learning rate of 0,01 and using CLAHE, a learning rate of 0,0001 without CLAHE, and a learning rate of 0,0001 using CLAHE. Of the 4 scenarios the learning rate scenario is 0,01 and using CLAHE gets the highest evaluation results using the Dice Similarity Coefficient (DSC) of 96.91%.