Claim Missing Document
Check
Articles

Found 2 Documents
Search

Deteksi Malaria Berbasis Segmentasi Warna Citra dan Pembelajaran Mesin Setiawan, Agung W.; Rahman, Yusuf A.; Faisal, Amir; Siburian, Marsudi; Resfita, Nova; Gifari, Muhammad W.; Setiawan, Rudi
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 8 No 4: Agustus 2021
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25126/jtiik.2021844377

Abstract

Di beberapa daerah di Indonesia, malaria masih merupakan salah satu penyakit endemik dan termasuk ke dalam kategori penyakit menular dengan vektor nyamuk Anopheles. Penurunan jumlah mortalitas penderita malaria ini telah menjadi program Pemerintah Indonesia dan World Health Organization. Salah satu hal penting yang dapat dilakukan adalah menyediakan alat diagnosis malaria yang cepat dan akurat berbantukan komputer. Oleh karena itu, pada studi ini dikembangkan sebuah metode deteksi malaria berbasis segmentasi warna citra yang dikombinasikan dengan metode pencacahan objek citra dan pembelajaran mesin berbasis Convolutional Neural Network. Pada studi ini, segmentasi citra dilakukan dengan menetapkan suatu nilai ambas batas tertentu (thresholding) pada model warna HSV. Nilai ambang batas untuk masing-masing kanal warna ditetapkan sebagai berikut: H = 100-175, S = 100-250, dan V = 60-190. Terdapat tiga skema pembelajaran mesin yang digunakan, yaitu citra asli menggunakan RMSProp optimizer, citra tersegmentasi menggunakan RMSProp dan Adam optimizer. Akurasi pelatihan dan validasi CNN tertinggi diperoleh dengan skema citra tersegmentasi menggunakan RMSProp optimizer, yaitu sebesar 92,77% dan 94,38%. Sementara, deteksi malaria berbasis pencacahan objek memiliki akurasi sebesar 93,78%. Meskipun deteksi malaria berbasis pencacahan objek memiliki akurasi 93,78%, tetapi sumber daya komputasi dan waktu yang diperlukan jauh lebih rendah.AbstractMalaria is still one of the endemic diseases in several regions of Indonesia. Reducing the malaria mortality rate has become a notable programme, not only does the Government of the Republic of Indonesia project it, but also the World Health Organization has a similar plan to tackle this disease. One of the prominent concerns to properly promote this programme is providing a rapid and accurate malaria diagnosis tool by applying the computer-aided diagnostics to minimize human errors. The aim of this study is to develop a colour microscopic image-based malaria detection using object counting and CNN-based machine learning. In this research, the HSV colour model with threshold values of H: 100-175, S: 100-250, and V: 60-190 was used to remove the image background. There are three machine learning schemes implemented in this study, i.e. original image using RMSProp optimizer, segmented image using RMSProp and Adam optimizer. The highest training and validation accuracy of CNN were obtained using a segmented image scheme by the RMSProp optimizer, 0.9277 and 0.9438. On the contrary, object-based malaria detection has an accuracy of 93.78%. Furthermore, there are several considerations to determine the malaria detection method, i.e. accuracy, computational resources, and time. Even though malaria detection using object counting has an accuracy of 93.78%, lower than the accuracy of CNN validation, the computational resources and time required are much lower and faster. Therefore, this detection method is suitable for smartphone-based devices with low-middle end specifications.
Development of Integrated Portable Device and Mobile Apps for Homecare System: Body Temperature and Respiration Rate Honesta, Edgina; Setiawan, Agung W.
Jurnal Ilmiah Teknik Elektro Komputer dan Informatika Vol. 7 No. 1 (2021): April
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26555/jiteki.v7i1.20504

Abstract

A Homecare system is a system that collects patient’ vital signs and health information. Vital signs abnormalities appear several hours before the patient health quality decrease. Therefore, the home care system can be applied to prevent chronic diseases. It is estimated that 25% of chronic disease patients can be prevented by checking vital signs regularly. In this research, an Android-based portable product development that integrates measurements of body temperature and respiration rate is developed. Body temperature will be detected by an infrared temperature sensor. A thermistor will be used to calculate the respiration rate. A thermistor is a resistor whose resistance is dependent on temperature. The accuracy achieved by body temperature measurement is 84% with ±1.37% precision. The accuracy achieved by the respiration rate measurement is 98% with ±3.98% precision. The two gauges are integrated into the microcomputer with a serial communication channel. And then, the measurement results that have been processed on the microcomputer are sent to Android using Bluetooth. Measurement results can be displayed and saved on the Android application. Product portability parameters are measured by weight, size, durability, and power supply. The power supply for this system uses a power bank where the measuring system can be turned on for 3 hours. This research can be applied to a homecare system that collects patients’ vital signs and health information.