Claim Missing Document
Check
Articles

Found 3 Documents
Search

Implementasi Penghitung Laju Respirasi pada Sistem Polisomnografi menggunakan Mikrofon dan Arduino Nano Manullang, Martin Clinton Tosima; Resfita, Nova
Jurnal Teknologi Terpadu Vol 7 No 1: Juli, 2021
Publisher : LPPM STT Terpadu Nurul Fikri

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.54914/jtt.v7i1.295

Abstract

Sleep apnea is a severe sleep disorder leading to severe threats such as heart attacks, strokes, diabetes, kidney failure, hypertension, etc. Not only is the diagnosis of sleep apnea a challenging measure, but it also requires a high cost of equipment, the limitations of available tools, and becomes a complicated diagnosis operated personally at home. Using the microphone embedded in the Arduino Nano, a system to measure the respiratory rate develops as a minor part of the sleep apnea diagnostic system using polysomnography. A filtering system is attached to eliminate noise and environmental consequences around the observation site. This prototype evaluates by comparing the output value with the manual calculation of the respiratory rate. Of the trials executed, the achieved system accuracy in counting the respiratory rate is above 93%, meaning that this prototype system is ideal as a method of measuring the respiratory rate.
Deteksi Malaria Berbasis Segmentasi Warna Citra dan Pembelajaran Mesin Setiawan, Agung W.; Rahman, Yusuf A.; Faisal, Amir; Siburian, Marsudi; Resfita, Nova; Gifari, Muhammad W.; Setiawan, Rudi
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 8 No 4: Agustus 2021
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25126/jtiik.2021844377

Abstract

Di beberapa daerah di Indonesia, malaria masih merupakan salah satu penyakit endemik dan termasuk ke dalam kategori penyakit menular dengan vektor nyamuk Anopheles. Penurunan jumlah mortalitas penderita malaria ini telah menjadi program Pemerintah Indonesia dan World Health Organization. Salah satu hal penting yang dapat dilakukan adalah menyediakan alat diagnosis malaria yang cepat dan akurat berbantukan komputer. Oleh karena itu, pada studi ini dikembangkan sebuah metode deteksi malaria berbasis segmentasi warna citra yang dikombinasikan dengan metode pencacahan objek citra dan pembelajaran mesin berbasis Convolutional Neural Network. Pada studi ini, segmentasi citra dilakukan dengan menetapkan suatu nilai ambas batas tertentu (thresholding) pada model warna HSV. Nilai ambang batas untuk masing-masing kanal warna ditetapkan sebagai berikut: H = 100-175, S = 100-250, dan V = 60-190. Terdapat tiga skema pembelajaran mesin yang digunakan, yaitu citra asli menggunakan RMSProp optimizer, citra tersegmentasi menggunakan RMSProp dan Adam optimizer. Akurasi pelatihan dan validasi CNN tertinggi diperoleh dengan skema citra tersegmentasi menggunakan RMSProp optimizer, yaitu sebesar 92,77% dan 94,38%. Sementara, deteksi malaria berbasis pencacahan objek memiliki akurasi sebesar 93,78%. Meskipun deteksi malaria berbasis pencacahan objek memiliki akurasi 93,78%, tetapi sumber daya komputasi dan waktu yang diperlukan jauh lebih rendah.AbstractMalaria is still one of the endemic diseases in several regions of Indonesia. Reducing the malaria mortality rate has become a notable programme, not only does the Government of the Republic of Indonesia project it, but also the World Health Organization has a similar plan to tackle this disease. One of the prominent concerns to properly promote this programme is providing a rapid and accurate malaria diagnosis tool by applying the computer-aided diagnostics to minimize human errors. The aim of this study is to develop a colour microscopic image-based malaria detection using object counting and CNN-based machine learning. In this research, the HSV colour model with threshold values of H: 100-175, S: 100-250, and V: 60-190 was used to remove the image background. There are three machine learning schemes implemented in this study, i.e. original image using RMSProp optimizer, segmented image using RMSProp and Adam optimizer. The highest training and validation accuracy of CNN were obtained using a segmented image scheme by the RMSProp optimizer, 0.9277 and 0.9438. On the contrary, object-based malaria detection has an accuracy of 93.78%. Furthermore, there are several considerations to determine the malaria detection method, i.e. accuracy, computational resources, and time. Even though malaria detection using object counting has an accuracy of 93.78%, lower than the accuracy of CNN validation, the computational resources and time required are much lower and faster. Therefore, this detection method is suitable for smartphone-based devices with low-middle end specifications.
Morphological Study of Electrospun Polyvinylpyrrolidone Fibers at High Concentration Using Water and Ethanol Solvents Nugroho, Doni Bowo; Kamal, Nada Nadzira Ayasha; Sidabalok, Jenni Bunga Enjelita; Wati, Rosita; Resfita, Nova; Gifari, Muhammad Wildan
Journal of Energy, Material, and Instrumentation Technology Vol 6 No 4 (2025): Journal of Energy, Material, and Instrumentation Technology (In Press)
Publisher : Departement of Physics, Faculty of Mathematics and Natural Sciences, University of Lampung

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Polyvinylpyrrolidone (PVP) is widely used in biomedical applications, and electrospinning is a common method for fabricating PVP nanofibers. While most studies focus on low to moderate concentrations (5–12 wt%), this work investigates the electrospinning of high-concentration PVP solutions, 50% (m/v), using distilled water and ethanol under applied voltages of 8 and 12 kV. Fiber morphology was characterized by scanning electron microscopy (SEM) and diameter distributions analyzed with ImageJ. Results showed that water-based solutions produced discontinuous fibers with ribbons, beads, and film-like structures, while ethanol-based solutions formed irregular fiber networks at 8 kV but transformed into globular particles at 12 kV due to jet instability. Diameter distribution of water-based fibers was broader (0.31–1.83 µm), whereas ethanol-based fibers exhibited a narrower but larger range (1.29–3.54 µm). These findings indicate that excessive polymer concentration leads to unstable structures, contrasting with continuous fibers reported at lower concentrations. The study highlights the limitations of electrospinning PVP at high concentrations and suggests potential applications in porous films and drug-release systems rather than uniform nanofibers.