Claim Missing Document
Check
Articles

Found 2 Documents
Search

Pemeriksaan Citra Mikroskop Menggunakan Graphical User Interface dengan Python pada Raspberry Pi Hidayat, Cahyadi A.; Muttaqin, Muhammad; Algifari, Muhammad H.; Ramadhani, Uri A.; Faisal, Amir; Siburian, Marsudi; Rahman, Yusuf A.
Medika Teknika : Jurnal Teknik Elektromedik Indonesia Vol. 5 No. 2 (2024): April
Publisher : Universitas Muhammadiyah Yogyakarta, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18196/mt.v5i2.18226

Abstract

Pengamatan objek mikroskopis seperti bakteri, parasit, atau virus menggunakan mikroskop cahaya untuk tujuan diagnosis berbagai penyakit memerlukan ketelitian yang tinggi, sangat melelahkan, memerlukan waktu yang lama, serta subjektifitas pengamat juga cukup tinggi. Oleh karena itu, mikroskop digital, otomatis, portabel, dan compact dirancang berbasis komputer mini raspberry pi agar mengurangi kelelahan dan subjektivitas dalam pengamatan sampel berukuran mikroskopis dalam jumlah yang banyak. Untuk mendukung alat bantu tersebut, platform graphical user interface (GUI) dirancang menggunakan bahasa pemrograman python untuk memfasilitasi interaksi pengamat dan mikroskop digital, sehingga dapat menyimpan citra pengamatan sampel laboratorium dalam format digital dan dapat dilakukan operasi pengolahan citra maupun pengujian model Convolutional Neural Network (CNN) pada layar LCD berbasis raspbery pi. Pengujian penggunaan platform GUI, pengolahan citra, dan model CNN telah dilakukan pada raspberry pi melalui interaksi lewat layar LCD. Operasi pengolahan citra dan penghitungan jumlah objek dengan nilai akurasi 56,21%, serta pengujian model CNN dengan nilai akurasi 98,76% dapat dieksekusi dengan baik pada platform GUI ini dengan waktu eksekusi selama 2-3 detik. Dengan dirancangnya platform GUI pada mikroskop digital berbasis komputer mini raspberry pi ini diharapkan dapat mempermudah tenaga kesehatan untuk menginterpretasi hasil pemeriksaan laboratorium dibandingkan dengan inspeksi manual sampel melalui penglihatan yang memerlukan ketelitian tinggi serta melelahkan sehingga ia dapat meningkatkan layanan kesehatan di berbagai daerah terpencil di Indonesia dan berkontribusi dalam penurunan dan eliminasi berbagai penyakit.
Deteksi Malaria Berbasis Segmentasi Warna Citra dan Pembelajaran Mesin Setiawan, Agung W.; Rahman, Yusuf A.; Faisal, Amir; Siburian, Marsudi; Resfita, Nova; Gifari, Muhammad W.; Setiawan, Rudi
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 8 No 4: Agustus 2021
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25126/jtiik.2021844377

Abstract

Di beberapa daerah di Indonesia, malaria masih merupakan salah satu penyakit endemik dan termasuk ke dalam kategori penyakit menular dengan vektor nyamuk Anopheles. Penurunan jumlah mortalitas penderita malaria ini telah menjadi program Pemerintah Indonesia dan World Health Organization. Salah satu hal penting yang dapat dilakukan adalah menyediakan alat diagnosis malaria yang cepat dan akurat berbantukan komputer. Oleh karena itu, pada studi ini dikembangkan sebuah metode deteksi malaria berbasis segmentasi warna citra yang dikombinasikan dengan metode pencacahan objek citra dan pembelajaran mesin berbasis Convolutional Neural Network. Pada studi ini, segmentasi citra dilakukan dengan menetapkan suatu nilai ambas batas tertentu (thresholding) pada model warna HSV. Nilai ambang batas untuk masing-masing kanal warna ditetapkan sebagai berikut: H = 100-175, S = 100-250, dan V = 60-190. Terdapat tiga skema pembelajaran mesin yang digunakan, yaitu citra asli menggunakan RMSProp optimizer, citra tersegmentasi menggunakan RMSProp dan Adam optimizer. Akurasi pelatihan dan validasi CNN tertinggi diperoleh dengan skema citra tersegmentasi menggunakan RMSProp optimizer, yaitu sebesar 92,77% dan 94,38%. Sementara, deteksi malaria berbasis pencacahan objek memiliki akurasi sebesar 93,78%. Meskipun deteksi malaria berbasis pencacahan objek memiliki akurasi 93,78%, tetapi sumber daya komputasi dan waktu yang diperlukan jauh lebih rendah.AbstractMalaria is still one of the endemic diseases in several regions of Indonesia. Reducing the malaria mortality rate has become a notable programme, not only does the Government of the Republic of Indonesia project it, but also the World Health Organization has a similar plan to tackle this disease. One of the prominent concerns to properly promote this programme is providing a rapid and accurate malaria diagnosis tool by applying the computer-aided diagnostics to minimize human errors. The aim of this study is to develop a colour microscopic image-based malaria detection using object counting and CNN-based machine learning. In this research, the HSV colour model with threshold values of H: 100-175, S: 100-250, and V: 60-190 was used to remove the image background. There are three machine learning schemes implemented in this study, i.e. original image using RMSProp optimizer, segmented image using RMSProp and Adam optimizer. The highest training and validation accuracy of CNN were obtained using a segmented image scheme by the RMSProp optimizer, 0.9277 and 0.9438. On the contrary, object-based malaria detection has an accuracy of 93.78%. Furthermore, there are several considerations to determine the malaria detection method, i.e. accuracy, computational resources, and time. Even though malaria detection using object counting has an accuracy of 93.78%, lower than the accuracy of CNN validation, the computational resources and time required are much lower and faster. Therefore, this detection method is suitable for smartphone-based devices with low-middle end specifications.