Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control

Water Level Detection for Flood Disaster Management Based on Real-time Color Object Detection Saddami, Khairun; Nurdin, Yudha; Noviantika, Fina; Oktiana, Maulisa; Muchallil, Sayed
Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control Vol. 8, No. 1, February 2023
Publisher : Universitas Muhammadiyah Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22219/kinetik.v8i1.1635

Abstract

Currently, the water level monitoring system for a river uses instruments installed on the banks of the river and must be checked continuously and manually. This study proposes a real-time water level detection system based on a computer vision algorithm. In the proposed system, we use color object tracking technique with a bar indicator as a reference’s level. We set three bar indicators to determine the status of the water level, namely NORMAL, ALERT and DANGER. A camera was installed across the bar level indicators to capture bar indicator and monitoring the water level. In the simulation, the monitoring system was installed in 5-100 lux lighting conditions. For experimental purposes, we set various distances of the camera, which is set of 40-80 centimeters and the camera angle is set of 30-60 degrees. The experiment results showed that this system has an accuracy of 94% at camera distance is in range 50-80 centimeters and camera angle is 60o. Based on these results, it can be concluded that this proposed system can determine the water level well in varying lighting conditions.
Implementation of Convolutional Recurrent Neural Network for Vehicle Number Plate Identification in Raspberry Pi Based Parking System Muzammil, Rivaul; Oktiana, Maulisa; Roslidar, Roslidar
Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control Vol. 10, No. 4, November 2025
Publisher : Universitas Muhammadiyah Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22219/kinetik.v10i4.2320

Abstract

The rapid growth of vehicles in Indonesia has created significant challenges in managing parking facilities. To address this issue, this study proposes an intelligent parking system based on automatic license plate character recognition. The system employs YOLOv8 (You Only Look Once) for license plate region detection and CRNN (Convolutional Recurrent Neural Network) for alphanumeric character recognition. Its architecture integrates a Raspberry Pi, camera module, and servo motor to enable automated license plate detection and recognition during vehicle entry and exit. YOLOv8 generates bounding boxes to isolate license plate regions, which are then processed as input for CRNN. The CRNN extracts visual features through convolutional layers and captures sequential relationships among characters using recurrent layers. The entire pipeline is deployed on Raspberry Pi with TensorFlow Lite to ensure efficient computation in resource-constrained environments. Experimental results demonstrate that YOLOv8 achieved a detection accuracy of 94.69%, with a precision of 98.32%, recall of 96.25%, and F1-score of 97.27%, while CRNN reached a character recognition accuracy of 93.8% across 30 license plates. Although some recognition errors occurred, such as misclassifying ‘G’ as ‘C’, 'W' as 'H', and 'Q' as 'O', the proposed system proved effective and feasible for embedded smart parking applications.