Claim Missing Document
Check
Articles

Found 34 Documents
Search

A Mobile Deep Learning Model on Covid-19 CT-Scan Classification Susanto, Prastyo Eko; Kurniawardhan, Arrie; Fudholi, Dhomas Hatta; Rahmadi, Ridho
International Journal of Artificial Intelligence Research Vol 6, No 2 (2022): Desember 2022
Publisher : Universitas Dharma Wacana

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (386.607 KB) | DOI: 10.29099/ijair.v6i1.257

Abstract

COVID-19 pandemic is currently happening in the world. Previous studies have been done to diagnose COVID-19 by identifying CT-scan images through the development of the novel Joint Classification and Segmentation System models that work in real-time. In this study, the author focuses on a different motivation and innovation focused on the development of mobile deep learning. Mobile Net, a deep learning model as a method for classifying the disease COVID-19, is used as the base model. It has a good level of efficiency and reliability to be implemented on devices that have small memory and CPU specifications, such as mobile phones. The used data in this study is a CT-scan image of the lungs with a horizontal slice that has been classified as positive or negative for COVID-19. To give a broader analysis, the author compares and evaluates the model against other architectures, such as MobileNetV3 Large, MobileNetV3 Small, MobilenetV2, ResNet101, and EfficientNetB0. In terms of the developed mobile architecture model, the classification of COVID-19 using MobileNetV2 obtained the best result with 0.81 accuracy.
TEMPORAL SPATIAL PROPERTY PROFILING AND IDENTIFICATION OF EARTHQUAKE PRONE AREAS USING ST-DBSCAN AND K-MEANS CLUSTERING Samsudin, Angga Radlisa; Fudholi, Dhomas Hatta; Iswari, Lizda
Jurnal Teknik Informatika (Jutif) Vol. 5 No. 3 (2024): JUTIF Volume 5, Number 3, June 2024
Publisher : Informatika, Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52436/1.jutif.2024.5.3.1293

Abstract

Indonesia is a country located at the confluence of three major tectonic plates, namely Indo-Australia, Eurasia, and the Pacific so that earthquakes often occur, one of which is in West Nusa Tenggara Province. One way to accelerate the disaster mitigation process is to analyze earthquake occurrence based on spatial temporal aspects. This study uses data from BMKG NTB Province during 2018 with a total of 3,699 earthquake events which are then analyzed using ST-DBSCAN and K-Means. ST-DBSCAN analysis was used to determine earthquake prone areas based on the date and location of the event, while k-means used the depth and magnitude of the earthquake. The results show that the distribution pattern of earthquakes in the NTB region has a stationary pattern and there are similar prone areas based on the location and time of occurrence as well as the strength and depth of the earthquake. The ST-DBSCAN method using latitude and longitude attributes produces one cluster that covers 96.33% of the total data. Meanwhile, K-Means using the depth and magnitude attributes produced four clusters. The four clusters were obtained from the cluster density using the silhouette score value between -1 and 1. The K-means analysis used a silhouette score result of 18.527 which was found in cluster 1. Earthquake prone areas in the distribution of earthquakes or types of earthquakes are located in Gangga and Bayan sub-districts of North Lombok and in Sambelia and Sembalun sub-districts of East Lombok. The sub-district with the most frequent earthquakes is Sambelia sub-district with 112 earthquakes. Then the strength of the largest earthquakes on average occurred in Gangga sub-district with magnitudes of 4 to 6.2 SR with shallow earthquake types. The prone area is located at the foot of the mountain and directly adjacent to the ocean.ith shallow earthquake types. The Prone area is at the foot of a mountain and directly adjacent to the ocean.
Implementation Of Deep Learning For Fake News Classification In Bahasa Indonesia Widhi, Eko Prasetio; Fudholi, Dhomas Hatta; Hidayat, Syarif
Journal Research of Social Science, Economics, and Management Vol. 3 No. 2 (2023): Journal Research of Social Science, Economics, and Management
Publisher : Publikasi Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.59141/jrssem.v3i02.546

Abstract

Fake news has become a serious threat in the digital information era. This research aims to develop a model for detecting fake news in Bahasa Indonesia using a deep learning approach, combining the Long Short-Term Memory (LSTM) method with word representations from Word2vec Continuous Bag of Words (CBOW) to achieve optimal results. Our main model is LSTM, optimized through hyperparameter tuning. This model can process information sequentially from both directions, allowing for a better understanding of the news context. The integration of Word2vec CBOW enriches the model's understanding of word relationships in news text, enabling the identification of important patterns for news classification. The evaluation results show that our model performs very well in detecting fake news. After the tuning process, we achieved an F1-Score of 97.30% and an Accuracy of 98.38%. 10-fold cross-validation yielded even better results, with an F1-Score and Accuracy reaching 99%.
Implementation of Semi-Supervised Learning with YOLOv11 for On-Shelf Availability Detection of Retail Avilba, Pandu; Kurniawardhani, Arrie; Fudholi, Dhomas Hatta
JIKO (Jurnal Informatika dan Komputer) Vol 8, No 3 (2025)
Publisher : Universitas Khairun

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33387/jiko.v8i3.10881

Abstract

On-Shelf Availability (OSA) is a critical aspect of retail operations that affects customer satisfaction and potential sales. Computer vision–based systems have emerged as a promising solution to monitor product availability on store shelves. However, their implementation faces the challenge of limited labeled data, which requires time-consuming manual annotation with precise bounding boxes. This study proposes a semi-supervised learning approach based on pseudo-labeling using the YOLOv11n architecture to address the scarcity of labeled data. We utilized a dataset of 918 retail product images with 174 classes, divided into four proportions of labeled data (20%, 40%, 60%, and 80%). The research stages included training a teacher model, generating pseudo-labels with a confidence threshold of 0.5, and training a student model using a combination of labeled and pseudo-labeled data. Experimental results show that this approach effectively improves detection performance. With 60% labeled data, the model achieved an mAP50 of 0.931 and an mAP50-95 of 0.864, along with high-quality pseudo-labels (F1-Score 0.727; IoU 0.819). This significant improvement indicates that pseudo-labels can enrich data variation without introducing excessive noise. The study demonstrates that semi-supervised learning can reduce dependence on large labeled datasets while offering a practical and efficient solution for OSA detection systems in retail environments