Ifnu Wisma Dwi Prastya
Universitas Nahdlatul Ulama Sunan Giri

Published : 4 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 4 Documents
Search

IMPLEMENTASI ALGORITMA C4.5 DALAM DIAGNOSIS AUTISME PADA ANAK MENGGUNAKAN RUMUSAN DIAGNOSTIC AND STATISTICAL MANUAL OF MENTAL DISORDERS V Ifnu Wisma Dwi Prastya; Yuniar, Intan; Rahmat, Basuki
Jurnal Informatika dan Sistem Informasi (JIFoSI) Vol. 1 No. 2 (2020): JIFoSI Volume 1, No 2: Juli 2020
Publisher : Fakultas Ilmu Komputer Universitas Pembangunan Nasional Veteran Jawa Timur

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (528.425 KB)

Abstract

Abstrak        Diagnosis autisme merupakan langkah pertama dalam proses penanganan autisme. Namun, permasalahannya banyak orang tua yang masih belum mengerti terkait gejala yang dialami oleh anaknya dan bagaimana cara penagannya. Masih banyak orang tua yang memilih untuk langsung berkonsultasi kedokter atupun tenaga medis. Sedangkan jumlah dokter atau tenaga medis dalam bidang gangguan perkembanagan mental dan otak masih sangant sedikit. Maka dari itu, dibutuhkan cara pendiagnosisan autisme secara mudah dan gampang diakses oleh orang tua, sehingga orang tua dapat dengan mudah mendiagnosis secara dini autisme pada anak. Algoritma C4.5 merupakan salah satu algoritma yang dapat memprediksi tingkat akurasi diagnosis autisme dan Diagnostic and Statistical Manual of Mental Disorders merupakan sebuah acuan yang digunakan untuk mendiagnosa suatu gangguan kejiwaan.          Penelitian ini menggunakan 70 data, dengan pembagian data dengan komposisi 70% untuk data latih dan 30 % data uji, sehingga ditemukan 50 data untuk digunakan sebagai data latih dan 20 data untuk data uji. Pengujian dalam sistem ini menggunakan metode Confusion Matrix. Pohon keputusan yang terbangun dari sistem ini memiliki nilai akurasi sebesar 90%, dan menghasilkan nilai precision sebesar 93,33% dan nilai recall sebesar 93,33%.   Kata Kunci : Diagnosis, Autisme, Algoritma C4.5, DSM-V  (Diagnostic and Statistical Manual of Mental Disorders V ). The diagnosis of autism is the first step in the process of treating autism. However, the problem is that many parents still do not understand the symptoms associated with their children and how to treat them. There are still many parents who choose to consult a doctor or a medical person directly. While the number of doctors or medical personnel in the field of mental and brain development disorders is still small. Therefore, it is needed a way to diagnose autism easily and easily accessed by parents, so parents can easily diagnose early autism in children. C4.5 algorithm is one algorithm that can predict the accuracy of the diagnosis of autism and the Diagnostic and Statistical Manual of Mental Disorders is a reference used to diagnose a psychiatric disorder. This study uses 70 data, with the division of data with a composition of 70% for training data and 30% for test data, so that 50 data are found to be used as training data and 20 data for test data. Testing in this system uses the Confusion Matrix method. The decision tree that was built from this system has an accuracy value of 90%, and produces a precision value of 93.33% and a recall value of 93.33%. Keywords: Diagnosis, Autism, C4.5 Algorithm, DSM-V (Diagnostic and Statistical Manual of Mental Disorders V).
Easy Data Augmentation untuk Data yang Imbalance pada Konsultasi Kesehatan Daring Anisa Nur Azizah; Misbachul Falach Asy'ari; Ifnu Wisma Dwi Prastya; Diana Purwitasari
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 10 No 5: Oktober 2023
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25126/jtiik.20231057082

Abstract

Pendekatan augmentasi teks sering digunakan untuk menangani imbalance data pada kasus klasifikasi teks, seperti teks Konsultasi Kesehatan Daring (KKD), yaitu alodokter.com. Teknik oversampling dapat mengatasi kondisi skewed terhadap kelas mayoritas. Namun, augmentasi teks dapat mengubah konten dan konteks teks karena kata-kata teks tambahan yang berlebihan. Penelitian kami menyelidiki algoritma Easy Data Augmentation (EDA), yang berbasis parafrase kalimat dalam teks KKD dengan menggunakan teknik Synonym Replacement (SR), Random Insertion (RI), Random Swap (RS), dan Random Deletion (RD). Kami menggunakan Tesaurus Bahasa Indonesia untuk mengubah sinonim di EDA dan melakukan percobaan pada parameter yang dibutuhkan oleh algoritma untuk mendapatkan hasil augmentasi teks yang optimal. Kemudian, percobaan menyelidiki proses augmentasi kami menggunakan pengklasifikasi Random Forest, Naïve Bayes, dan metode berbasis peningkatan seperti XGBoost dan ADABoost, yang menghasilkan peningkatan akurasi rata-rata sebesar 0,63. Hasil parameter EDA terbaik diperoleh dengan menambahkan nilai 0,1 pada semua teknik EDA mendapatkan 88,86% dan 88,44% untuk akurasi dan nilai F1-score. Kami juga memverifikasi hasil EDA dengan mengukur koherensi teks sebelum dan sesudah augmentasi menggunakan pemodelan topik Latent Dirichlet Allocation (LDA) untuk memastikan konsistensi topik. Proses EDA dengan RI memberikan koherensi yang lebih baik sebesar 0,55 dan dapat mendukung implementasi EDA untuk menangani imbalance data, yang pada akhirnya dapat meningkatkan kinerja klasifikasi.   Abstract   The text augmentation approach is often utilized for handling imbalanced data of classifying text corpus, such as online health consultation (OHC) texts, i.e., alodokter.com. The oversampling technique can overcome the skewed condition towards majority classes. However, text augmentation could change text content and context because of excessive words of additional texts. Our work investigates the Easy Data Augmentation (EDA) algorithm, which is sentence paraphrase-based in the OHC texts that often in non-formal sentences by using techniques of synonym replacement (SR), random insertion (RI), random swap (RS), and random deletion (RD). We employ the Indonesian thesaurus for changing synonyms in the EDA and do empirical experiments on parameters required by the algorithm to obtain optimal results of text augmentation. Then, the experiments investigate our augmentation process using classifiers of Random Forest, Naïve Bayes, and boosting-based methods like XGBoost and ADABoost, which resulted in an average accuracy increase of 0.63. The best EDA parameter results were acquired by adding a value of 0.1 in all EDA techniques to get 88.86% and 88.44% for accuracy and F1-score values. We also verified the EDA results by measuring coherences of texts before and after augmentation using a topic modeling of Latent Dirichlet Allocation (LDA) to ensure topic consistency. The EDA process with RI gave better coherences of 0.55, and it could support the EDA application to handle imbalanced data, eventually improving the classification performance.
Pelatihan Dan Penyuluhan Pembuatan Lilin Aromaterapi Dari Limbah Tembakau Di Desa Gunungrejo Kedungpring Lamongan Februyani, Nawafilla; Ifnu, Ifnu Wisma Dwi Prastya
Jurnal SOLMA Vol. 14 No. 1 (2025)
Publisher : Universitas Muhammadiyah Prof. DR. Hamka (UHAMKA Press)

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Background: Tobacco is an important agricultural commodity with various benefits, including for natural pesticides, cosmetics, and essential oils. One potential innovation from tobacco waste is the manufacture of aromatherapy candles, which have health benefits such as reducing stress and improving quality of life. This community service program aims to utilize tobacco waste through training and counseling on making aromatherapy candles for 25 PKK members of Gunungrejo Village, Kedungpring District, Lamongan Regency. Methods: The methods used include counseling, socialization of the benefits of aromatherapy candles, and candle-making practices. Results: The results of the program showed an increase in participant understanding from 47.9% to 98.2% based on the pretest and posttest. Conclusions: In addition to social benefits in the form of health awareness and community strengthening, this program also opens up economic opportunities with the potential for increased income through the development of aromatherapy candle businesses based on tobacco waste.
Rice Quality Identification Built on Indonesian Food Standards Based on Electronic Nose using Naïve Bayes Algorithm Muhammad Jauhar Vikri; Ifnu Wisma Dwi Prastya; Ucta Pradema Sanjaya; Mula Agung Barata
INOVTEK Polbeng - Seri Informatika Vol. 10 No. 1 (2025): Maret
Publisher : P3M Politeknik Negeri Bengkalis

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35314/0y0xct32

Abstract

Rice is a staple food in Indonesia, where its quality is regulated by the National Food Standards outlined in National Food Agency Regulation No. 2 of 2023 on Rice Quality and Labeling Requirements. Rice is classified into four grades: premium, medium 1, medium 2, and medium 3. The widespread practice of mislabeling lower-quality rice as a premium through repackaging highlights the critical need for quality control measures. An electronic nose (e-nose) is a reliable device for food quality control. Previous studies have demonstrated its ability to classify rice into two quality grades with 80% accuracy. This study uses exponential data transformation and the Naive Bayes algorithm to enhance the classification accuracy for four rice quality grades according to national standards. The methodology includes signal acquisition, feature extraction using statistical parameters, exponential data transformation, classification, and performance evaluation. The results show that exponential data transformation improves classification accuracy to 97%. This technology can be implemented for automated quality control in milling facilities, storage warehouses, and distribution centres, ensuring consistent rice quality while enhancing supply chain efficiency. The e-nose-based model offers a fast and reliable solution, minimising reliance on human operators.