Claim Missing Document
Check
Articles

Found 17 Documents
Search

Nannofossil Distribution and Age of Kendeng Zone In Kalibeng River Section of Kedungringin, Plandaan Area, Jombang, East Java Choiriah, Siti Umiyatun; Prasetyadi, Carolus; Kapid, Rubiyanto; Yudiantoro, Dwi Fitri
Indonesian Journal on Geoscience Vol 7, No 1 (2020)
Publisher : Geological Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (4727.528 KB) | DOI: 10.17014/ijog.7.1.15-24

Abstract

DOI:10.17014/ijog.7.1.15-24This study was carried out at Kalibeng River Section, in Kedungringin area, a site with lithology suitable for a nannoplankton research. Methods used in this research include performing a stratigraphical measurement section at the field, collecting thirty-two samples, and preparing the samples with the smear slide method using a polarizing microscope with 1000x magnification, and preparing several rock samples using SEM analysis. The analysis of nannofossil resulted in twelve genera and forty-three species. The identified genera are: Calcidiscus, Coccolithus, Ceratolithus, Discoaster, Gephyrocapsa, Helicosphaera, Pseudoemiliania, Reticulofenestra, Rhabdosphaera, Sphenolithus, Syracosphaera, and Umbilicosphaera. The presence of these genera indicates that Kalibeng River Section have abundant nannofossils and based on the nannofossil analysis, from older to younger, the studied stratigraphic sequence indicates a more detailed age determination as follows: the Marl Unit of Kalibeng is NN10-NN18 (Middle Miocene to Pliocene), Calcareous Sandstone Unit of Sonde is NN19-NN20 (Pliocene-Pleistocene), and Calcareous Claystone Unit of Sonde is NN20-NN21 (Pleistocene).
Nannofossil Distribution and Age of Kendeng Zone In Kalibeng River Section of Kedungringin, Plandaan Area, Jombang, East Java Choiriah, Siti Umiyatun; Prasetyadi, Carolus; Kapid, Rubiyanto; Yudiantoro, Dwi Fitri
Indonesian Journal on Geoscience Vol 7, No 1 (2020)
Publisher : Geological Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17014/ijog.7.1.15-24

Abstract

DOI:10.17014/ijog.7.1.15-24This study was carried out at Kalibeng River Section, in Kedungringin area, a site with lithology suitable for a nannoplankton research. Methods used in this research include performing a stratigraphical measurement section at the field, collecting thirty-two samples, and preparing the samples with the smear slide method using a polarizing microscope with 1000x magnification, and preparing several rock samples using SEM analysis. The analysis of nannofossil resulted in twelve genera and forty-three species. The identified genera are: Calcidiscus, Coccolithus, Ceratolithus, Discoaster, Gephyrocapsa, Helicosphaera, Pseudoemiliania, Reticulofenestra, Rhabdosphaera, Sphenolithus, Syracosphaera, and Umbilicosphaera. The presence of these genera indicates that Kalibeng River Section have abundant nannofossils and based on the nannofossil analysis, from older to younger, the studied stratigraphic sequence indicates a more detailed age determination as follows: the Marl Unit of Kalibeng is NN10-NN18 (Middle Miocene to Pliocene), Calcareous Sandstone Unit of Sonde is NN19-NN20 (Pliocene-Pleistocene), and Calcareous Claystone Unit of Sonde is NN20-NN21 (Pleistocene).
Feasibility Study on the Application of Dynamic Elastic Rock Properties from Well Log for Shale Hydrocarbon Development of Brownshale Formation in the Bengkalis Trough, Central Sumatra Basin, Indonesia. Ahmad Muraji Suranto; Aris Buntoro; Carolus Prasetyadi; Ricky Adi Wibowo
Journal of Geoscience, Engineering, Environment, and Technology Vol. 6 No. 2 (2021): JGEET Vol 06 No 02 : June (2021)
Publisher : UIR PRESS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25299/jgeet.2021.6.2.5944

Abstract

In modeling the hydraulic fracking program for unconventional reservoir shales, information about elasticity rock properties is needed, namely Young's Modulus and Poisson's ratio as the basis for determining the formation depth interval with high brittleness. The elastic rock properties (Young's Modulus and Poisson's ratio) are a geomechanical parameters used to identify rock brittleness using core data (static data) and well log data (dynamic data). A common problem is that the core data is not available as the most reliable data, so well log data is used. The principle of measuring elastic rock properties in the rock mechanics lab is very different from measurements with well logs, where measurements in the lab are in high stresses / strains, low strain rates, and usually drained, while measurements in well logging use the principle of measured downhole by high frequency sonic. vibrations in conditions of very low stresses / strains, High strain rate, and Always undrained. For this reason, it is necessary to convert dynamic to static elastic rock properties (Poisson's ratio and Young's modulus) using empirical equations. The conversion of elastic rock properties (well logs) from dynamic to static using the empirical calculation method shows a significant shift in the value of Young's Modulus and Poisson's ratio, namely a shift from the ductile zone dominance to the dominant brittle zone. The conversion results were validated with the rock mechanical test results from the analog outcrop cores (static) showing that the results were sufficiently correlated based on the distribution range.
PALEOTEMPERATURE INTERPRETATION BASED ON CALCAREOUS NANNOPLANKTON OF KEDUNG SUMBER RIVER SECTION, SOKO, BOJONEGORO, EAST JAVA Siti Umiyatun Choiriah; Carolus Prasetyadi; Rubiyanto Kapid; Dwi Fitri Yudiantoro; Muhammad Syaifudin
Techno LPPM Vol 6, No 1 (2020)
Publisher : Universitas Pembangunan Nasional Veteran Yogayakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Analysis of 64 samples taken from the Kedung Sumber River section represent of Kalibeng Formation, Atasangin Member, Klitik Member, Sonde Formation, and Pucangan Formation. The detail of nannoplankton analysis showing that temperature changes influenced to the growth of nannoplankton.  Result of this study reveals that a number of 32 zones paleotemperature change. Age of the Kalibeng Formation is Late Miocene to Early Pliocene (NN10-NN13), divided into nine zones: 1/warm, 2/cold, 3/transitional, 4/warm, 5/cold, 6/warm, 7/cold, 8/cold, 9/warm zone. Atasangin Member are divided into 3 zones: 10/cold, 11/warm, 12/cold zone. Age of this member is Early Pliocene (NN13-NN14). Klitik Member is Early Pliocene to Late Pliocene (NN14-NN17), and divided to 7 zones: 13/transitional, 14/warm, 15/cold, 16/warm, 17/cold, 18/warm zone. Age of Sonde Formation is NN18-NN20 (Late Pliocene to Early Pleistocene), have into 7 zones: 19/cold, 20/warm, 21/transitional, 22/cold, 23/transitional, 24/cold, 25/transitional, 26/ cold, 27/transitional zone, 28/warm, 29/cold zone. Pucangan Formation are divided into 3 zones: 30/warm, 31/transitional, 32/cold zone. Age of this formation is Pleistocene (NN20-NN21).
Nannofossil Distribution and Age of Kendeng Zone In Kalibeng River Section of Kedungringin, Plandaan Area, Jombang, East Java Siti Umiyatun Choiriah; Carolus Prasetyadi; Rubiyanto Kapid; Dwi Fitri Yudiantoro
Indonesian Journal on Geoscience Vol 7, No 1 (2020)
Publisher : Geological Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17014/ijog.7.1.15-24

Abstract

DOI:10.17014/ijog.7.1.15-24This study was carried out at Kalibeng River Section, in Kedungringin area, a site with lithology suitable for a nannoplankton research. Methods used in this research include performing a stratigraphical measurement section at the field, collecting thirty-two samples, and preparing the samples with the smear slide method using a polarizing microscope with 1000x magnification, and preparing several rock samples using SEM analysis. The analysis of nannofossil resulted in twelve genera and forty-three species. The identified genera are: Calcidiscus, Coccolithus, Ceratolithus, Discoaster, Gephyrocapsa, Helicosphaera, Pseudoemiliania, Reticulofenestra, Rhabdosphaera, Sphenolithus, Syracosphaera, and Umbilicosphaera. The presence of these genera indicates that Kalibeng River Section have abundant nannofossils and based on the nannofossil analysis, from older to younger, the studied stratigraphic sequence indicates a more detailed age determination as follows: the Marl Unit of Kalibeng is NN10-NN18 (Middle Miocene to Pliocene), Calcareous Sandstone Unit of Sonde is NN19-NN20 (Pliocene-Pleistocene), and Calcareous Claystone Unit of Sonde is NN20-NN21 (Pleistocene).
Pemodelan Intensitas Rekahan pada Fractured Basement Reservoir dengan Pendekatan Konsep Geologi Menggunakan Analisis Kualitatif di Cekungan Sumatra Tengah Muchamad Ocky Bayu Nugroho; Carolus Prasetyadi; Teguh Jatmiko
Jurnal Offshore: Oil, Production Facilities and Renewable Energy Vol 2, No 1 (2018): Jurnal Offshore : Oil, Production Facilities and Renewable Energy
Publisher : Proklamasi 45 University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1165.858 KB) | DOI: 10.30588/jo.v2i1.347

Abstract

Lokasi Penelitian terletak di Selat Malaka dan termasuk dalam Cekungan Sumatra Tengah. Secara stratigrafi, Batuan Dasar Cekungan Sumatra Tengah berumur Pra Tersier dengan litologi batuan sedimen yang termalihkan atau metasedimen. Berdasarkan data sumur pemboran, batuan dasar di lokasi penelitian secara umum berupa kuarsit dan filit. Rekahan pada batuan dasar dikontrol oleh periode tektonik regional yang mempengaruhi Sumatra. Sesar-sesar yang terbentuk berarah umum Utara Barat Laut – Selatan Tenggara (NNW – SSE), hasil dari fase tektonik selama Paleogen hingga Neogen yang menghasilkan morfologi batuan dasar beragam akibat adanya horst graben dan half graben. Morfologi tinggian adalah yang berpotensi menjadi reservoir karena batuan induk yang terletak lebih rendah akan memungkinkan migrasi hidrokarbon. Identifikasi rekahan batuan dasar dianalisa berdasarkan data pemboran sumur dan seismik. Intensitas rekahan dibangun berdasarkan model dengan pendekatan 4 parameter geologi yaitu intensitas rekahan dengan jarak dari bidang sesar, intensitas rekahan dengan pucak antiklin, intensitas rekahan dengan jarak dari permukaan batuan dan dibantu dengan atribut seismik. Nilai intensitas yang memungkinkan terbentuk rekahan adalah 0,3-1.The research site is located in the Malacca Strait and is included in the Central Sumatra Basin. Stratigraphically, the basement of the Central Sumatra Basin is Pre-Tertiary with thermal sedimentary or metasediment lithology. Based on data from drilling wells, bedrock in the study site generally consists of quartzite and filite. Fractures in bedrock are controlled by regional tectonic periods affecting Sumatra. Faults that form are generally north-north-south-south (NNW-SSE), resulting from tectonic phases during Paleogene to Neogene which produce various bedrock morphologies due to horst graben and half graben. Height morphology is the potential to be a reservoir because the source rock which is located lower will allow hydrocarbon migration. Identification of basement fractures was analyzed based on well and seismic drilling data. The fracture intensity was built based on the model with a 4 geological parameter approach, namely fracture intensity with distance from the fault plane, fracture intensity with anticline peaks, fracture intensity with distance from the rock surface and assisted with seismic attributes. The intensity value that allows the fracture to form is 0.3-1.
Facies and architectural analysis of Paleogen fluvial deposits of the measured section of Rambangnia and Air Napalan Rivers in Palembang Sub-basin Sapto Kis Daryono; Carolus Prasetyadi; Eko Teguh Paripurno; Sutanto Sutanto; Aditya Zaenalfi Faozi
Journal of Earth and Marine Technology (JEMT) Vol 3, No 1 (2022)
Publisher : Lembaga Penelititan dan Pengabdian kepada Masyarakat - Institut Teknologi Adhi Tama Suraba

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31284/j.jemt.2022.v3i1.3606

Abstract

Paleogene fluvial deposits have an important problem as pre-rift deposits, which occur before or at the same time as the formation of the basin. The research results on facies analysis and interpretation of the depositional environment of Paleogene deposits located in the Garba Hills will later explain and describe the history of the formation and stratigraphic evolution of sedimentary rocks in the South Sumatra Basin, reflected in the lithological and facies characteristics. The facies analysis was carried out on a stratigraphic cross-section with a thickness of ± 107.37 meters and ± 11.06 meters on the measurement path of the Rambangnia River and Air Napalan River, which are located in the Ogan Komering Ulu area, South Sumatra. Seven lithofacies developed on two measured paths are matrix supported gradded gravel (Gmg), gravel matrix supported Massive (Gmm), through cross-bedded (St), massive sandstone (Sm), horizontally bedded sandstones (Sh), parallel laminated siltstone and claystone (F1), massive siltstones and mudstones (Fsm). Asosiasi fasies didapatkan berupa Sedimentary Gravity Flow (SG), Gravel Bars (GB), Sandy Bedforms  (SB), channel (CH), Overbank fine  (FF). The interpretation of the depositional environment shows a fluvial environment, the type of braided river with a gravel braided rivers model with sedimentary gravity flows.Paleogene fluvial deposits have an important problem as pre-rift deposits, which occur before or at the same time as the formation of the basin. The research results on facies analysis and interpretation of the depositional environment of Paleogene deposits located in the Garba Hills will later explain and describe the history of the formation and stratigraphic evolution of sedimentary rocks in the South Sumatra Basin, reflected in the lithological and facies characteristics. The facies analysis was carried out on a stratigraphic cross-section with a thickness of ± 107.37 meters and ± 11.06 meters on the measurement path of the Rambangnia River and Air Napalan River, which are located in the Ogan Komering Ulu area, South Sumatra. Seven lithofacies developed on two measured paths are matrix supported gradded gravel (Gmg), gravel matrix supported Massive (Gmm), through cross-bedded (St), massive sandstone (Sm), horizontally bedded sandstones (Sh), parallel laminated siltstone and claystone (F1), massive siltstones and mudstones (Fsm). Asosiasi fasies didapatkan berupa Sedimentary Gravity Flow (SG), Gravel Bars (GB), Sandy Bedforms  (SB), channel (CH), Overbank fine  (FF). The interpretation of the depositional environment shows a fluvial environment, the type of braided river with a gravel braided rivers model with sedimentary gravity flows.
Architecture Elements of the Lemat Formation of the Lubuk Bernai Region, Batang Asam District, Tanjung Jabung Barat Regency, Jambi Province Sapto Kis Daryono; Sutanto Sutanto; Carolus Prasetyadi; Eko Teguh Paripurno
Journal of Earth and Marine Technology (JEMT) Vol 3, No 1 (2022)
Publisher : Lembaga Penelititan dan Pengabdian kepada Masyarakat - Institut Teknologi Adhi Tama Suraba

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31284/j.jemt.2022.v3i1.3396

Abstract

The study of facies analysis and interpretation of the depositional environment of the Lemat Formation located at Bukit Tiga Puluh aims to clarify the problems found in Paleogene sediments in the South Sumatra Basin. A detailed analysis of the fluvial facies has been carried out in the Lubuk Bernai track. A number of observations, profiling, and measured stratigraphic section have been carried out. The stratigraphy of the study area can be divided into 5 units from old to young, namely the Mentulu-metamorphic sandstone unit, Lemat conglomerate unit, Lemat gravel-sandstone unit, Benakat volcanic-siltstone unit, and the alluvial deposit unit. The stratigraphic relationship between Mentulu metamorphic-sandstone unit and Lthe emat conglomerate unit is nonconformity. The relationship between Lthe emat conglomerate unit and Lemat gravel-sandstone unit and Benakat volcanic-siltstone unit is interfingering. The relationship between alluvial deposit units with Lemat conglomerate units and Lemat gravel-sandstone units is aan ngular unconformity. Analysis of lithofacies and architectural elements of the study area showed a fluvial depositional environment. The resulting architectural elements are 8 associations: SG (sedimentary gravity flow), GB (gravel bedform), SB (sandy bedform), CH (channel), DA (downstream accretion), HO (scour-hollow fill), AC (abandoned channel) and FF (overbank fine). The depositional environment of the Lemat Formation; Lemat conglomerate unit in alluvial fans environment, Lemat gravel sandstone unit in the shallow environment, gravel-bed braided river. In the Benakat tuffaceous-siltstone unit, it was deposited in a flashy, ephermal, sheet flood, sand-bed river environment.
Three-Dimensional Facies Modeling of Deepwater Fan Sandbodies: Outcrop Analog Study from the Miocene Kerek Formation, Western Kendeng Zone (North East Java Basin) Ferry Andika Cahyo; Octavika Malda; Iqbal Fardiansyah; Carolus Prasetyadi
Berita Sedimentologi Vol 26, No 1 (2013)
Publisher : Ikatan Ahli Geologi Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (2296.004 KB) | DOI: 10.51835/bsed.2013.26.1.165

Abstract

Kendeng Zone is well known as the main depocenter in the North East Java Basin. It developed as a back arc basin related to Oligo-Miocene volcanic arc and was subsequently filled with thick pelagic and volcanogenic sediments.This article emphasizes on determination of facies, geometry and distribution of sand bodies within the Miocene Kerek Formation that comprises the western Kendeng Zone. Sedimentological logs and rock samples were collected from outcrop data along river traverses in the study area. The samples were described and characterized by using petrography, paleontology and sedimentology analyses. Three depositional facies were identified, which consist of massive sandstone of submarine lower fan, a lobe of submarine lower fan and pelagic mud deposits.Statistical analysis was also used to characterize and describe identified depositional facies within the Kerek Formation. Statistically, the geometry consists of (1) pebbly massive sandstones of submarine lower fan (mean distribution of sands bodies: 4.58 km, mean thickness: 0.6 m, length from 3D modeling: 1.58 km); (2) sandstone sheets of submarine lower fan (mean distribution of sands bodies: 2.85 km, mean thickness: 0.08 m, length from 3D fence diagram: 1.26 km); (3) pelagic mud, which is composed solely of thick mudstone lithofacies. In term of reservoir potential, the massive sandstones that have significant amount of porosity would be considered as having the highest potential.
Depositional Environment Characteristic of The Late Miocene Kerek Formation in Kendeng Basin: A Case from Cipluk Area, Kendal Regency, Central Java Joseph Emmanuel Ardine; Septyo Uji Pratomo; Carolus Prasetyadi; M. Ocky Bayu Nugroho; Aga Rizky; Yohanes Citra Kristanto; I Nyoman Agus Dharma Manggala
Journal of Earth and Marine Technology (JEMT) Vol 4, No 1 (2023)
Publisher : Lembaga Penelititan dan Pengabdian kepada Masyarakat - Institut Teknologi Adhi Tama Suraba

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31284/j.jemt.2023.v4i1.4830

Abstract

This study focused on the Late Miocene Kerek Formation in Cipluk, Kendal Regency, Central Java, which belongs to the Kerek Formation, a lithostratigraphy unit characterized by Early Miocene - Late Miocene turbidite deposits. The research aims to comprehensively interpret the depositional environment characteristics of the Late Miocene Kerek Formation based on lithofacies, thin section analysis, and micropaleontological analysis. Gaining insights into facies characteristics and the depositional environment will offer novel perspectives for the exploration and development of oil and gas resources in the Kendeng basin. The methodology consists of data collection, analysis, and synthesis. Results indicate that the study area is dominated by classical turbidite facies, suggesting a distal zone with slow sediment settling. The analysis reveals that the Late Miocene Kerek Formation was deposited in a deep marine environment within the inner bathyal—outer bathyal bathymetry zone, specifically in the lower fan section of a submarine fan system. Based on the characteristics of existing deposits and facies, the deposition environment is identified as a fine-grained, mud-rich complex in an elongated submarine fan. These findings contribute to a better understanding of the Late Miocene depositional environment in the Kendeng Basin, Central Java.