Claim Missing Document
Check
Articles

Found 5 Documents
Search

Prototipe Smart Chicken Farm Berbasis Internet of Things (IoT) Menggunakan Blink Ramdan, Ramdan; Hamidi, Eki Ahmad Zaki; Effendi, Mufid Ridlo
Fuse-teknik Elektro Vol 4 No 1 (2024): Fuse-teknik Elektro
Publisher : Fakultas Teknik Universitas Garut

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52434/jft.v4i1.4045

Abstract

Penelitian ini membahas pengembangan prototipe Smart Chicken Farm berbasis Internet of Things (IoT) menggunakan platform Blink. Sistem ini dirancang untuk memantau dan mengontrol berbagai aspek dari peternakan ayam secara real-time, termasuk suhu, kelembaban, dan pemberian pakan otomatis. Sensor-sensor yang digunakan mengirimkan data ke mikrokontroler, yang kemudian memproses dan mengirimkannya ke aplikasi Blink melalui koneksi internet menggunakan NodeMCU ESP8266. Pengguna dapat memantau kondisi peternakan dan mengontrol perangkat dari jarak jauh melalui aplikasi Blink. Hasil implementasi menunjukkan peningkatan efisiensi operasional dan kemudahan dalam pengelolaan peternakan ayam. Sistem ini memberikan solusi efektif dan inovatif untuk manajemen peternakan ayam modern. 
Desain dan Implementasi Sistem Pelipat Baju Otomatis Menggunakan Arduino Uno Berbasis Internet of Things RESTU AGUSTHIANI, DILLA; Firdaus, M Alfian; Ridwan, Azwar Mudzakir; Hamidi, Eki Ahmad Zaki
Fuse-teknik Elektro Vol 4 No 2 (2024): Fuse-teknik Elektro
Publisher : Fakultas Teknik Universitas Garut

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52434/jft.v4i2.42009

Abstract

Teknologi Internet of Things (IoT) telah menjadi solusi inovatif dalam berbagai aspek kehidupan, termasuk pengembangan perangkat rumah tangga pintar. Penelitian ini bertujuan untuk merancang dan mengimplementasikan sistem pelipat baju otomatis berbasis IoT menggunakan Arduino Uno sebagai pengontrol utama. Sistem ini dirancang untuk memberikan kemudahan dalam melipat pakaian secara efisien dan otomatis. Sistem terdiri dari komponen utama seperti motor servo, sensor ultrasonik, dan modul Wi-Fi ESP8266 yang memungkinkan pengendalian perangkat melalui aplikasi berbasis smartphone. Proses kerja dimulai dengan pendeteksian pakaian menggunakan sensor ultrasonik, diikuti oleh pengoperasian motor servo untuk melipat pakaian sesuai dengan urutan yang telah diprogram. Pengguna dapat memantau dan mengontrol sistem secara real-time melalui koneksi internet. Hasil pengujian menunjukkan bahwa sistem mampu melipat berbagai jenis pakaian dengan akurasi hingga 90% dalam waktu rata-rata 30 detik per pakaian. Sistem ini juga menunjukkan stabilitas tinggi dalam komunikasi IoT, dengan responsivitas aplikasi mencapai 95% dari total pengujian. Penelitian ini memberikan kontribusi signifikan dalam pengembangan perangkat rumah tangga otomatis yang inovatif, serta membuka peluang untuk pengembangan lebih lanjut dalam bidang teknologi IoT.
Prediksi Semester Tugas Akhir Mahasiswa Berdasarkan Transkrip Nilai Menggunakan Linear Regression, Kernel Ridge Regression dan Decision Tree Regression Hamidi, Eki Ahmad Zaki; Edi Mulyana; Dilla Restu Agusthiani; Aldi Fahruzi Muharam
EPSILON: Journal of Electrical Engineering and Information Technology Vol 22 No 2 (2024): Journal of Electrical Engineering and Information Technology
Publisher : Department of Electrical Engineering, UNJANI

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55893/epsilon.v22i2.123

Abstract

This study aims to predict the semester in which students complete their final thesis using transcript data and three regression algorithms: Linear Regression, Kernel Ridge Regression, and Decision Tree Regression. The research evaluates the performance of each model using Mean Squared Error (MSE) and Mean Absolute Error (MAE) as evaluation metrics. The experimental results show that Kernel Ridge Regression outperforms the other two models with an MSE of 2.271 and an MAE of 1.251. In comparison, Linear Regression achieved an MSE of 5.137 and an MAE of 1.859, while Decision Tree Regression produced an MSE of 4.1 and an MAE of 1.2. These findings indicate that Kernel Ridge Regression is the most effective method for predicting the completion semester based on academic transcripts, providing more accurate and reliable results. The study contributes to the academic field by demonstrating the potential of machine learning models in predicting students' academic progress and supporting better decision-making for academic management.
Implementasi Teknologi Content Delivery Network (CDN) Sebagai Akselerasi Digitalisasi Sekolah Syambas, Nana Rachmana; Ahdan, Syaiful; Hamidi, Eki Ahmad Zaki; Negara, Ridha Muldina; Mayasari, Ratna; Nurhayati, Ade; Nurkahfi, Galih Nugraha; Jupriyadi, Jupriyadi; Sucipto, Adi; Arifin, Hasan Nur; Tulloh, Rohmat
GUYUB: Journal of Community Engagement Vol 6, No 1 (2025): Maret
Publisher : Universitas Nurul Jadid

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33650/guyub.v6i1.9812

Abstract

Abstract. This community service program aims to accelerate the digitalization of education in Pesisir Barat Regency, Lampung Province, through the implementation of Content Delivery Network (CDN) technology using Starlink services and the Learning Management System (LMS) Moodle. The 3T areas (frontier, outermost, and underdeveloped) in this region face infrastructure challenges that hinder stable and fast internet access, which is crucial to support technology-based learning processes. This program involves the installation of network devices, such as Starlink for stable internet access, gigabit switches, and the integration of the Moodle-based e-learning system. Additionally, intensive training is provided to teachers, administrators, and students on using Moodle as a digital learning platform and managing technology-based educational content. The program's success is measured through several parameters, including internet stability and speed, the improvement of digital skills among teachers and students, and the adoption and utilization rates of LMS Moodle in the learning process. Speed test results show a significant improvement. Survey results indicate a substantial impact on teachers' digital literacy. Based on questionnaires distributed to a total of 30 training participants, 60% (18 participants) reported being very satisfied with the alignment of the training materials with their needs. Regarding the delivery of the materials, 63.33% (19 participants) were very satisfied, 26.67% (8 participants) were satisfied, 6.66% (2 participants) were neutral, and 3.33% (1 participant) were very dissatisfied. Direct observation during the implementation showed that teachers could effectively utilize Moodle LMS to manage digital classes. They were trained to create and organize teaching materials, assign tasks, and monitor student progress. This evaluation also highlights the potential for replicating and sustaining the program in other schools within similar regions. Through this evaluation approach, the program is expected to have a tangible impact on improving the quality of learning, expanding digital access, and serving as a model for implementation in other 3T areas across Indonesia.
Supervisory Control and Data Acquisition (SCADA) System for Sedimentation Automation in Water Treatment Plant Using Schneider Modicon M221 Programmable Logic Controller Hamidi, Eki Ahmad Zaki; Rahmawati, Raisa; Effendi, Mufid Ridlo
Jurnal Teknik Elektro Indonesia Vol 6 No 2 (2025): JTEIN: Jurnal Teknik Elektro Indonesia
Publisher : Departemen Teknik Elektro Fakultas Teknik Universitas Negeri Padang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24036/jtein.v6i2.726

Abstract

This research discusses the application of the Supervisory Control and Data Acquisition (SCADA) System in the sedimentation automation process in water treatment plants. SCADA is used to monitor and control various critical parameters in the sedimentation process, increasing the efficiency and accuracy of water treatment. This system is implemented using a Programmable Logic Controller (PLC), the Schneider Modicon M221, which functions as the main controller. The Schneider Modicon M221 PLC was chosen because of its reliability in managing automation processes and its ability to integrate with SCADA systems. The results of this implementation show significant improvements in process control, operational efficiency, and real-time monitoring, all of which contribute to the improved quality of treated water. And sludge removal in the sedimentation system occurs when the sensor reads that the water has a turbidity value equal to 14 NTU.