Claim Missing Document
Check
Articles

Found 1 Documents
Search
Journal : Jurnal Informatika dan Teknik Elektro Terapan

KOMPARASI ALGORITMA BOOSTING UNTUK PREDIKSI GANGGUAN TIDUR Mawardi, Ade Bagus; Pradini, Risqy Siwi; Haris, M. Syauqi
Jurnal Informatika dan Teknik Elektro Terapan Vol. 13 No. 3 (2025)
Publisher : Universitas Lampung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23960/jitet.v13i3.7281

Abstract

Gangguan tidur merupakan salah satu permasalahan kesehatan yang dapat berdampak pada kualitas hidup seseorang. Dalam upaya meningkatkan akurasi prediksi gangguan tidur, teknologi kecerdasan buatan telah banyak dimanfaatkan, khususnya melalui pendekatan algoritma machine learning. Penelitian ini bertujuan untuk melakukan komparasi terhadap lima algoritma boosting, yaitu AdaBoost, CatBoost, LightGBM, Gradient Boosting, dan XGBoost menggunakan dataset Sleep Health and Lifestyle. Adapun tahap penelitian yang dilakukan meliputi pengumpulan data, prapemrosesan data, normalisasi, serta evaluasi model. Berdasarkan hasil evaluasi, algoritma CatBoost menunjukkan performa paling unggul dibandingkan dengan algoritma lainnya. Hasil evaluasi menunjukkan bahwa algoritma CatBoost memberikan performa terbaik dengan akurasi sebesar 97,37%, presisi 96,29%, recall 95,83%, dan F1-score 95,82%. Hasil analisis menunjukkan bahwa keunggulan CatBoost berasal dari kemampuannya dalam menangani fitur kategorikal secara langsung tanpa memerlukan encoding tambahan, serta kemampuannya dalam mengurangi overfitting dibandingkan dengan metode boosting lainnya. Temuan ini menunjukkan bahwa model prediksi berbasis boosting khususnya CatBoost dapat dijadikan alat bantu yang efektif dalam deteksi gangguan tidur secara lebih akurat.