Claim Missing Document
Check
Articles

Found 37 Documents
Search

REDESAIN OUT GUIDE (TRACER) SEBAGAI OPTIMALISASI PENGELOLAAN DOKUMEN REKAM MEDIS RUMAH SAKIT BANTUAN TNI-AD 05.08.02 MALANG Fita Rusdian Ikawati; Achmad Jaelani Rusdi; Retno Dewi Prisusanti; R. A. Rengganis Ularan; Anis Ansyori; Mochammad Anshori
JOURNAL OF TRAINING AND COMMUNITY SERVICE ADPERTISI (JTCSA) Vol. 2 No. 1 (2022): Feb 2022
Publisher : ADPERTISI

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (250.141 KB)

Abstract

Penggunaan tracer di ruang penyimpanan sebenarnya sudah tertuang dalam aturan dasar yang harus dipatuhi di tempat penyimpanan. Berdasarkan wawancara dari survey awal yang dilakukan dengan petugas rekam medis di RS TNI-AD 05.08.02 Malang ditemukan permasalahan pada sistem penyimpanan berkas rekam medis yaitu tracer tidak digunakan dengan baik karena menurut petugas tracer terbatas jumlahnya. Tujuan dari perancangan ini adalah untuk merancang tracer dan Standar Operasional Prosedur (SOP) untuk digunakan di rumah sakit pada tahun 2021. Jenis metode yang digunakan adalah pengabdian masyarakat dengan melakukan perancangan. Metode pengumpulan data menggunakan observasi, wawancara, dan studi dokumentasi. Hasil perancangan tracer terpilih berbahan dasar plastik Poly Ethylene Terephthalate (PET) alternatif I warna merah, dengan ukuran panjang 30 cm dan lebar 10 cm, terdapat permintaan slip bag ukuran panjang 13 cm dan lebar 6 cm beserta SOP penggunaan tracer. Hasil desain tracer terpilih kemudian diterapkan ke rumah sakit. Namun, SOP akan ditinjau dan ditutup sebelum diterapkan. Diharapkan pihak rumah sakit dapat mengimplementasikan tracer dengan baik dan mempercepat penilaian SOP yang akan digunakan sehingga dapat diterapkan dengan tracer yang telah dirancang
Pelatihan Komputerisasi Keuangan Untuk Koperasi Syariah Ikmal Ponpes Al-Khoiroot Gondanglegi Malang Menggunakan Perangkat Lunak Akuntansi M. Syauqi Haris; Ahsanun Naseh Khudori; Wahyu Teja Kusuma; Nindynar Rikatsih; Mochammad Anshori
PROSIDING SEMINAR NASIONAL PENGABDIAN KEPADA MASYARAKAT UNIVERSITAS NAHDLATUL ULAMA SURABAYA Vol. 1 No. 1 (2022): Prosiding Seminar Nasional Pengabdian Kepada Masyarakat : Perguruan Tinggi Meng
Publisher : Universitas Nahdlatul Ulama Surabaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1328.091 KB) | DOI: 10.33086/snpm.v1i1.877

Abstract

Pengelolaan keuangan pada koperasi secara manual akan menyulitkan dalam pembuatan laporan keuangan yang representatif secara tepat waktu. Selain karena kurangnya pemahaman SDM yang ada terhadap sistem akuntansi, pengarsipan dan pembukuan transaksi secara manual memerlukan waktu yang lama dalam inventarisasi atau rekap transaksi. Pemanfaatan teknologi informasi berupa perangkat lunak akuntansi dibutuhkan untuk memasukkan data setiap transaksi agar tersimpan secara digital sehingga dapat dilakukan pemrosesan secara otomatis dalam pembuatan laporan keuangan yang sesuai dengan prinsip akuntansi. Namun, implementasi perangkat lunak akuntansi harus diiringi dengan Standard Operating Procedure (SOP) yang sesuai dan jelas agar dalam operasional dan input transaksi bisa sesuai dan laporan yang dihasilkan sesuai dengan yang diharapkan. Oleh karena itu, proses diskusi untuk penggalian permasalahan transaksi dan pembuatan panduan operasional yang tepat perlu untuk disusun dan di-training-kan ke pengurus dan pengelola koperasi. Kegiatan ini diharapkan dapat meningkatkan SDM dari lembaga mitra kegiatan dalam hal pembuatan laporan keuangan secara akurat dan efisien dengan memanfaatkan teknologi informasi yang sudah terstandardisasi dengan prinsip akuntansi untuk entitas tanpa akuntabilitas publik (SAK-ETAP) yang menjadi dasar dalam penyusunan laporan koperasi. Berdasarkan hasil survey pasca kegiatan, 80% peserta menyatakan bahwa modul standar prosedur operasional atau SOP bagi SDM koperasi yang disusun sangat membantu dalam menjalankan aktivitas hariannya, terutama dalam melakukan input data transaksi ke dalam sistem. Selanjutnya proses pengawasan atau pendampingan secara berkala tetap diperlukan guna menjaga agar system tetap dijalankan dengan baik sesuai dengan SOP yang ada.
PENGEMBANGAN MEDIA TERAPI PERBAIKAN RESPIRATORY RATE BERBASIS AUDIO VISUAL BERBASIS ISO 9241-210:2019 HUMAN-CENTERED DESIGN Ahsanunnaseh Khudori; Wahyu Teja Kusuma; Mochamad Anshori; Nugroho Teguh Yuono; Heri Wahyu Wibowo
Jurnal Indonesia : Manajemen Informatika dan Komunikasi Vol. 4 No. 1 (2023): Jurnal Indonesia : Manajemen Informatika dan Komunikasi (JIMIK)
Publisher : Lembaga Penelitian dan Pengabdian Kepada Masyarakat (LPPM) AMIK Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35870/jimik.v4i1.165

Abstract

The spread of the Covid-19 virus is of more concern to various parties. A referral hospital in Surabaya City noted that from March 2020 to July 2021 the recovery rate was 85% of patients exposed to the Covid-19 virus. More than 425 people are members of TNI soldiers, TNI civil servants, retired officers, and family members exposed to the virus. The handling and prevention of the spread of the Covid-19 virus are still being carried out. This study aims to develop respiratory rate improvement therapy media based on audiovisual media. The method to be used is based on ISO 9241-210:2019 Human-centered design as well as several other methods such as persona and expert validation. This research was conducted by conducting pre-production, production, and then editing scenarios. The results of this study were validated by testing the audio-visual media carried out by informatic validation and physiotherapy experts. The results of the expert validation prove that audiovisual media has succeeded because that has met the needs of the users and has a significant effect on improving the respiratory rate.
Assessing the Relative Importance of Price, Safety, Energy Efficiency, Brand Reputation, and Warranty in Car Selection using SMART Method as Decision Support System Mochammad Anshori; Jimmy Moedjahedy; Samuel PD Anantadjaya; Ardimansyah Ardimansyah; Susi Indriyani
JINAV: Journal of Information and Visualization Vol. 3 No. 2 (2022)
Publisher : PT Mattawang Mediatama Solution

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35877/454RI.jinav1523

Abstract

The Simple Multi Attribute Rating Technique (SMART) is a decision support system that is widely used for evaluating and comparing alternatives based on multiple criteria. In this study, we applied the SMART method to assess the relative importance of price, safety, energy efficiency, brand reputation, and warranty in car selection. We assigned scores to each car model for each criterion, weighted the criteria based on their relative importance, and calculated an overall score for each car model. The results of this study show that the SMART method is a simple and easy-to-use tool that can help in making informed decisions in car selection. The method allows for the inclusion of both quantitative and qualitative criteria, making it versatile and applicable to a wide range of decision-making problems. Future research could focus on developing methods to address the limitations of the SMART method. Another area of research could be to integrate the SMART method with other decision-making tools, such as multi-criteria decision analysis or artificial intelligence, to improve its performance and applicability. Additionally, more research could be done on how to effectively use SMART method in real-life scenarios where the data is uncertain, incomplete and inconsistent
PREDICTION OF STUNTING PREVALENCE IN EAST JAVA PROVINCE WITH RANDOM FOREST ALGORITHM M. Syauqi Haris; Mochammad Anshori; Ahsanun Naseh Khudori
Jurnal Teknik Informatika (Jutif) Vol. 4 No. 1 (2023): JUTIF Volume 4, Number 1, February 2023
Publisher : Informatika, Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52436/1.jutif.2023.4.1.614

Abstract

Stunting or cases of failure to thrive in toddlers is one of the most serious health problems faced by the people of Indonesia. Based on data from the Ministry of Health and the Central Statistics Agency, East Java Province has a stunting prevalence value of 26.8% which is categorized as a high prevalence value according to the standards of the World Health Organization (WHO). Random forest is one of the machine learning algorithms in the field of artificial intelligence that can learn patterns from labeled data so that it can be used as a method for predicting or forecasting data. This approach is considered very suitable to be used in predicting the value of stunting prevalence because stunting prevalence data is usually accompanied by other data in the health sector according to survey results. Previous studies on the prediction of stunting prevalence used secondary data sourced from one survey only. Therefore, this study is one of the efforts to contribute in providing solutions for the stunting problem in East Java Province by combining several data from different surveys in the same year. The results of this study show that from 20 factor candidates for predicting stunting prevalence value, only 12 factors are suspected to be causative factors based on their correlation value. However, the prediction results obtained using the random forest algorithm in this study, with data consisting of 12 features and a dataset consisting of only 38 data, have results with error values of 1.02 in MAE and 1.64 in MSE that are not better than multi-linear regression which can produce smaller error values of 0.93 in MAE and 1.34 in MSE.
Penerapan Backpropagation Neural Network (BPNN) Untuk Prediksi Kecanduan Smartphone Pada Remaja Mochammad Anshori; M. Syauqi Haris; Wahyu Teja Kusuma
CICES (Cyberpreneurship Innovative and Creative Exact and Social Science) Vol 9 No 2 (2023): CICES
Publisher : UNIVERSITAS RAHARJA

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33050/cices.v9i2.2701

Abstract

COVID-19 caused by the coronavirus disease-2019 has spread rapidly and attacked massively. As a precaution, a lockdown policy was issued. This policy limits the activities of schools, offices, shops, prohibits traveling at certain times, maintains distance from one another and reduces crowds in the public. During the lockdown period resulted in a new lifestyle where the use of smartphones increased. This increase is based on the fact that smartphones have many functions such as information, communication, education and entertainment. But excessive use of smartphones can cause addictive effects, especially in adolescents. Excessive use of smartphones makes teenagers become insomniac, different social behavior, low self-confidence, and even anxiety. The complexity of anxiety symptoms in adolescents tends to be difficult to understand, therefore a prediction of smartphone addiction with backpropagation is proposed. Parameter testing is done to get the right artificial neural network architecture. The results of testing the parameters that have been carried out are iterations = 50, the number of neurons in the hidden layer = 9 and the learning rate = 0.3. With this model, an accuracy of 99.49%, TPR of 99.5% and FPR of 0.08% is obtained. Keywords—Backpropagation, Artificial Neural Network, Smartphone Addiction, Machine Learning, Neural Network COVID-19 yang disebabkan oleh coronavirus disease-2019 telah menyebar dengan cepat dan menyerang secara masif. Sebagai tindakan pencegahan maka dikeluarkan kebijakan lockdown. Kebijakan ini membatasi kegiatan sekolah, perkantoran, pertokoan, melarang bepergian dalam waktu tertentu, saling menjaga jarak dan mengurangi kerumunan di publik. Selama masa lockdown menghasilkan gaya hidup yang baru dimana kegunaan smartphone meningkat. Peningkatan ini didasari karena smartphone memiliki banyak fungsi seperti informasi, komunikasi, edukasi dan hiburan. Tetapi penggunaan smartphone yang berlebihan dapat menimbulkan efek candu khususnya pada remaja. Berlebihan dalam menggunakan smartphone membuat anak remaja menjadi insomnia, Tingkah laku pergaulan yang berbeda, kepercayaan diri yang rendah, bahkan kecemasan. Kompleksnya gejala kecemasan pada anak remaja cenderung sulit untuk dipahami, oleh karena itu diusulkan prediksi kecanduan smartphone dengan backpropagation. Pengujian parameter dilakukan untuk mendapatkan arsitektur jaringan syaraf tiruan yang tepat. Hasil pengujian parameter yang telah dilakukan adalah iterasi = 50, jumlah neuron pada hidden layer = 9 dan nilai learning rate = 0.3. Dengan model tersebut, maka didapatkan akurasi sebesar 99.49%, TPR sebesar 99.5% dan FPR sebesar 0.08%. Kata Kunci—Backpropagation, Jaringan Saraf Tiruan, Kecanduan Smartphone, Pembelajaran Mesin, Jaringan Saraf
PREDIKSI PASIEN DENGAN PENYAKIT KARDIOVASKULAR MENGGUNAKAN RANDOM FOREST Mochammad Anshori; Nindynar Rikatsih; M. Syauqi Haris
TEKTRIKA Vol 7 No 2 (2022): TEKTRIKA Vol.7 No.2 2022
Publisher : Telkom University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25124/tektrika.v7i2.5279

Abstract

Cardiovascular disease is one of the deadliest diseases in the world. This is evidenced by data released by WHO which shows around 18 million deaths. This disease causes the cessation of the heartbeat which is the main source of life for the human body.This disease is caused by various things including an unhealthy lifestyle. Examples are consuming cigarettes and alcohol. In addition, it is also caused by other factors, namely health problems such as high blood pressure, cholesterol, diabetes, depression, or anxiety. The cardiovascular disease tends to be difficult to cure, therefore a precise and accurate prediction is needed in diagnosing patients. One method of making predictions is using machine learning techniques. In machine learning, there are various methods that can be used, one of which is the decision tree-based method, namely random forest. Before the random forest is implemented to create a model, the data is pre-processed by normalizing and applying cross-validation with k-fold = 10. The prediction results with the random forest in this study provide an accuracy of 98%. This accuracy is higher when compared to previous studies with the same dataset, namely 96.75% using the ensemble method and 91.61% with logistic regression. On this basis, it proves that the random forest can be used to predict cardiovascular disease. Key Words: cardiovascular disease, tree model, random forest, machine learning.
Predicting Heart Disease using Logistic Regression Mochammad Anshori; M. Syauqi Haris
Knowledge Engineering and Data Science Vol 5, No 2 (2022)
Publisher : Universitas Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17977/um018v5i22022p188-196

Abstract

A common risk of death is caused by heart disease. It is critical in the field of medicine to be able to diagnose cardiac disease in order to adequately prevent and treat patients. The most accurate method of prediction has the potential to both extend the patient's life and reduce the severity of their cardiac disease. The use of machine learning is one approach that may be taken to generate predictions. In this study, patient medical record information was used in conjunction with an algorithm for logistic regression in order to make heart disease diagnoses. The outcomes of the logistic regression have been utilized to achieve a high level of accuracy in the prediction of heart disease. To get the model coefficients needed for the equation, the experiment uses an iterative form of the logistic regression test. Iteration 14 produced the best results, with an accuracy of 81.3495% and an average calculation time of 0.020 seconds. The best iteration was reached at that point. The percentage of space that lies beneath the ROC curve is 89.36%. The findings of this study have significant implications for the field of heart disease prediction and can contribute to improved patient care and outcomes. Accurate predictions obtained through logistic regression can guide healthcare professionals in identifying individuals at risk and implementing preventive measures or tailored treatment plans. The computational efficiency of the model further enhances its applicability in real-time decision support systems.
DISEMINASI SOCIAL MEDIA MARKETING BAGI COFFEE SHOP DI DESA TAMANSARI, LICIN, BANYUWANGI Mochammad Anshori; M. Syauqi Haris; Risqy Siwi Pradini
Community Development Journal : Jurnal Pengabdian Masyarakat Vol. 4 No. 4 (2023): Volume 4 Nomor 4 Tahun 2023
Publisher : Universitas Pahlawan Tuanku Tambusai

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31004/cdj.v4i4.18212

Abstract

Pengabdian masyarakat ini bertujuan untuk meningkatkan pengetahuan dan keterampilan para pemilik coffee shop di Tamansari, Banyuwangi, dalam menggunakan media sosial untuk pemasaran. Kegiatan ini dilakukan dengan memberikan pelatihan dan pendampingan dalam pembuatan dan pengelolaan akun media sosial, serta strategi pemasaran digital. Hasil kegiatan menunjukkan bahwa para pemilik coffee shop telah memiliki pemahaman yang baik tentang pentingnya media sosial untuk pemasaran. Namun, masih banyak yang perlu ditingkatkan dalam hal teknis pembuatan dan pengelolaan akun, serta strategi pemasaran digital. Melalui kegiatan ini, diharapkan para pemilik coffee shop dapat meningkatkan visibilitas dan daya saing bisnis mereka melalui media sosial. Berdasarkan hasil statistik dengan regresi linier terhadap pre dan pos tes, didapatkan nilai korelasi koefisien = 0,876457 yang berarti memiliki korelasi positif kuat. Presentase keberhasilan kegiatan ini sebesar 76,8% yang didapatkann dari nilai R square. Sedangkan nilai significance F = 0,000876, memiliki makna bahwa kegiatan diseminasi ini memiliki pengaruh secara signifikan karena nilai tersebut lebih dari batas ambang 0,05
Use Discriminant Analysis to Identify Eroticism-Related Terms in The Lyrics of Dangdut Songs Herry Wahyu Wibowo; Muhammad Hasbi; Mochammad Anshori
Journal of Enhanced Studies in Informatics and Computer Applications Vol. 1 No. 1 (2024): JESICA Vol. 1 No. 1 2024
Publisher : Institut Teknologi, Sains, dan Kesehatan RS.DR. Soepraoen Kesdam V/BRW

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47794/jesica.v1i1.5

Abstract

The song "Dangdut" is one of the most popular songs in Indonesia, having gained popularity from the 1960s until the present. It's even been acknowledged as authentic Indonesian music. There are both positive and negative effects on the pendengarnya of lagu dangdut. Positive dampening can lower stress levels, and negative dampening occurs when emotions are heightened. If this was brought up by a young child who was not yet fully grown, it would give them a hard time and negatively impact their journey. According to this framework, it is recommended that any eroticism in the lyrics of dance music be identified. It is therefore advised to look for signs of sexuality in the lyrics of dangdut songs. The intention is to restrict and filter the music that kids can listen to. Using LDA and QDA classifiers in conjunction with natural language processing is the suggested approach. According to research findings, LDA can identify more than QDA. The LDA examination yielded the following results: recall = 56.522%, accuracy = 56.522%, precision = 79.13%, and F1score = 65.942%. It has been demonstrated that discriminant analysis, particularly LDA, is useful for classification, as QDA has not shown itself to be the most effective method in this instance.