Kebakaran hutan di Indonesia telah menyebabkan kerusakan lingkungan, polusi udara, serta dampak serius pada kesehatan dan ekonomi. Penelitian ini mengembangkan model prediksi risiko kebakaran hutan menggunakan algoritma Random Forest dengan seleksi fitur melalui Lasso Regression, berdasarkan data meteorologi dari BMKG (2011-2024). Variabel utama yang digunakan meliputi temperatur rata-rata, kelembapan, curah hujan, dan kecepatan angin. Hasil evaluasi model menunjukkan akurasi 100%, dengan precision, recall, dan F1-score masing-masing 1.00 untuk semua kelas risiko kebakaran. Confusion matrix dan kurva ROC mengonfirmasi kemampuan model dalam mengklasifikasikan setiap instance tanpa kesalahan. Analisis fitur menyoroti temperatur rata-rata, kelembapan, dan curah hujan sebagai faktor utama. Model ini berpotensi menjadi komponen penting dalam sistem peringatan dini kebakaran hutan di indonesia. Penelitian ini merekomendasikan integrasi data tambahan dan implementasi real-time untuk meningkatkan akurasi dan aplikabilitas model di masa mendatang.