Claim Missing Document
Check
Articles

Found 6 Documents
Search

Web-Based Incoming and Outgoing Mail Information System Using PHP and Mysql Programming Languages In Karanganyar Village Rozaq Rais, Nendy Akbar
International Journal of Computer and Information System (IJCIS) Vol 3, No 4 (2022): IJCIS : Vol 3 - Issue 4 - 2022
Publisher : Institut Teknologi Bisnis AAS Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29040/ijcis.v3i4.196

Abstract

Information technology is currently developing rapidly, causing all aspects of human life to always be connected to the development of this technology. The influence of this technological development can be felt in various fields, both academic and non-academic. Manual data processing has begun to be eliminated and changed into a computerized system to facilitate the data processing process so that it can be done quickly and does not take a long time. Karanganyar Village Hall has a letter filing system that is still manual. Incoming letters are still stored in large folders that are sorted by letter number, in addition, archiving incoming letters requires the creation of a disposition to be addressed to the relevant party. The creation of this disposition awaits the leader who as a leader has a lot of busyness or activities. So that the process of making dispositions and making outgoing letters takes a long time. This Incoming and Outgoing Letter Application is one way to handle the processing of correspondence data starting from recording and archiving incoming letters, making dispositions, making outgoing letters, as well as reports of incoming and outgoing letters and is expected to be able to process correspondence data without taking a long time and can be processed. With this application, it is expected to make it easier for employees to manage correspondence. This application is built with PHP and MySQL.
Classification of Cattle Diseases in Semin District Using Convolutional Neural Network (CNN) Permana, Xvan Erik Kobar; Rozaq Rais, Nendy Akbar; Muqorobin, Muqorobin
International Journal of Computer and Information System (IJCIS) Vol 5, No 2 (2024): IJCIS : Vol 5 - Issue 2 - 2024
Publisher : Institut Teknologi Bisnis AAS Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29040/ijcis.v5i2.172

Abstract

Cattle farming is a crucial sector for the economy and food security in Semin District. However, cattle diseases pose a serious threat, leading to economic losses and animal welfare issues. Farmers' lack of understanding about cattle diseases hinders effective disease management, and some solutions implemented by farmers can worsen the condition of the animals. Therefore, this study aims to implement a disease classification system for cattle using Convolutional Neural Network (CNN). The diseases targeted in this study include three common threats to cattle in this region: Bovine Ephemeral Fever (BEF), Mastitis, and Scabies. With the advancement of technology, it is expected that cattle farmers in Semin District can minimize errors in diagnosing cattle diseases through the application of artificial intelligence (AI) for disease classification. The study utilized a dataset consisting of 864 training data and 216 validation data, achieving an accuracy of 1.0000 and a loss of 0.0040. For testing, the system achieved an accuracy of 0.9306 and a loss of 0.4430.
ANALISIS STUKTUR KECEPATAN AKSES DATA PADA OPTIMASI QUERY RUSHMORE Darno; Rozaq Rais, Nendy Akbar
Jurnal Informatika, Komputer dan Bisnis (JIKOBIS) Vol. 1 No. 1 (2021): Vol. 1 No. 1 April 2021
Publisher : LPPM ITB AAS Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (224.714 KB)

Abstract

Analisa struktur kecepatan akses datapada query rushmore berhubungan dengan kecepatan saat memasukan data, melakukan pengolahan data serta pelaporan sebuah data menjadi informasi. Penelitian ini akan membahas tentang setruktur pada kondisi atau perintah serta kecepatan yang dihasilkan dari query rushmore sebagai dasar pengukuran kecepatan sebuah metode query database. Dalam hal kecepatan pengolahan data maka akan berhubungan langsung dengan penyajian data, sehingga apabila data semakin cepat dan tepat maka akan menjadi penyajian data yang baik. Dalam penelitian ini dilatar belakangi oleh perlunya informasi dalam penyajian data sebagai contoh dengan metode query rusmore. Penelitian ini akan menjelaskan beberapa poin sebagai tujuan penelitian yang diantaranya gambaran umum metode query rusmore, struktur dari metode query rushmore, perintah penggunaan query rushmore, pengujian query rasmore dan hasil query rushmore. Dengan adanya tujuan tersebut maka dapat dilihat hasil dari penelitian ini sebuah informasi untuk mengetahui struktur metode query rushmore. Hasil penelitian dapat memberikan sebuah informasidalam struktur kecepatan query rushmore yang dapat digunakan sebagai dasar pertimbangan dalam penelitian atau pembuatan sebuah database yang cepat dan tepat.
Decision Support System in Determining The Route of Delivery of Goods With The Maut and WP Methods at The Kasiyah Shop Rozaq Rais, Nendy Akbar; Efendi, Tino Feri; Pakarti, Moch Bagoes
International Journal of Computer and Information System (IJCIS) Vol 5, No 4 (2024): IJCIS : Vol 5 - Issue 4 - 2024
Publisher : Institut Teknologi Bisnis AAS Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29040/ijcis.v5i4.221

Abstract

The rapid development of information technology has encouraged many companies to switch to digital platforms, including in the retail and trade sectors. Decision Support System (DSS) is one solution that can be used to help the route selection process. An effective and efficient goods delivery process is essential to support the success of logistics operations. An effective and efficient shipping process is essential to support the success of logistics operations. However, this process is often complicated and time-consuming, especially when companies receive many orders from different locations.. To overcome this challenge, the use of a Decision Support System (DSS) can be the right solution. There are various methods that can be used in DSS to support the delivery route selection process, researchers conducted research using the MAUT (Multi-Attribute Utility Theory) and WP (Weighted Points) methods. The results of this study are expected to help improve the effectiveness and efficiency of the selection process, as well as ensure that the selected route has the necessary mileage to support the operational success of logistics companies.
Pembuatan Aplikasi Sistem Informasi Kelurahan Gawan Tanon Kabupaten Sragen Berbasis Web Muqorobin, Muqorobin; Muslihah, Isnawati; Rokhmah, Siti; Rozaq Rais, Nendy Akbar; Pardanawati, Sri Laksmi; Samanto, Hadi; Feri Efendi, Tino
BUDIMAS : JURNAL PENGABDIAN MASYARAKAT Vol. 4 No. 1 (2022): BUDIMAS : VOL. 04 NO. 01, 2022
Publisher : LPPM ITB AAS Indonesia Surakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Perkembangan layanan teknologi informasi di era globalisasi saat ini telah berkembang cukup pesat. Mulai dari layanan pedesaan sampai perkotaan saat ini telah menerapkan banyak fasilitas dari teknolog informasi. Kelurahan Dawung memiliki tugas dan fungsi untuk melaksanakan kewenangan pemerintahan, keamanan dan ketertiban yang bertugas untuk membuat surat pernyataan penguasaan tanah, surat keterangan tanah, ahli waris, surat keterangan kematian, keterangan pindah dan pada pelayanan pengaduan. Dalam melaksanakan tugas dan fungsinya tersebut, kantor kelurahan panarung belum mempunyai sistem informasi yang dapat menunjang kegiatan pelayanan terhadap masyarakat. karena semua sistem masih dilakukan secara manual Untuk itu perlukan adanya suatu Aplikasi Sistem Informasi Kelurahaan yang dapat mengarsib dan menjaga data agar tidak mudah hilang. Tujuan dari Pengabdian masyarakat ini adalah untuk membantu pihak kepala desa dalam perancangan suatu sistem informasi layanan informasi kelurahan dawung berbasis web. Hasil akhir dari pengabdian ini adalah suatu aplikasi sistem informasi layanan kelurahan berbasis web.
Perbandingan Kinerja Algoritma Random Forest, AdaBoost, dan Gradient Boosting dalam Memprediksi Risiko Penyakit Hipertensi Muftisany, Hafidz; Efendi, Tino Feri; Rozaq Rais, Nendy Akbar
Faktor Exacta Vol 18, No 2 (2025)
Publisher : LPPM

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30998/faktorexacta.v18i2.28959

Abstract

Hypertension disease risk prediction is one of the challenges in the health field that can be supported by the development of machine learning models. Hypertension is a chronic condition that can lead to various serious complications, such as heart disease and stroke, so early detection is very important. However, conventional methods of diagnosing hypertension often require extensive medical examinations and are not always accessible to all individuals. Therefore, the development of artificial intelligence-based predictive models can be a more efficient solution in supporting the early detection of hypertension.This study aims to compare the performance of three popular machine learning algorithms, namely Random Forest, AdaBoost, and Gradient Boosting, in predicting hypertension risk. The most effective algorithm will be used in future research for program development. The dataset used consists of relevant medical and demographic data, such as blood pressure, body mass index, age, gender, and family history of hypertension. The model is built using a supervised learning approach, where the data is labeled based on the patient's hypertension condition. Evaluation was conducted using accuracy, precision, recall, and F1-score metrics to assess the performance of each algorithm.The methods used in this research include data preprocessing, feature selection, model training, and model performance evaluation. In addition, this research also designs an artificial intelligence-based hypertension prediction application that is expected to provide recommendations to users based on the model's prediction results.The results of this research are expected to provide insight into the most effective machine learning algorithms in hypertension risk prediction, considering the trade-off between accuracy and computational efficiency. Hypothesized based on previous research, Random Forest algorithm is better than the other two algorithms.