Claim Missing Document
Check
Articles

Found 2 Documents
Search

Model Predictive Control in Hardware in the Loop Simulation for the OnBoard Attitude Determination Control System Irwanto, Herma Yudhi; Yusgiantoro, Purnomo; Sahabuddin, Zainal Abidin; Bura, Romie O.; Artono, Endro; Hakim, Arif Nur; Nuryadi, Ratno; Andiarti, Rika; Mariani, Lilis
Journal of Robotics and Control (JRC) Vol 5, No 2 (2024)
Publisher : Universitas Muhammadiyah Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18196/jrc.v5i2.21613

Abstract

Rocket flight tests invariably serve a purpose, one of which involves area monitoring or aerial photography. Consequently, the rocket necessitates the installation of a camera that remains consistently oriented toward the Earth's surface throughout its trajectory. Thus, ensuring the rocket's stability and preventing any rotation becomes imperative. To achieve this, the Onboard Attitude Determination Control System (OADCS) was researched and developed, fully controlled by NI myRIO with Labview as the programming language, ensures the rocket's attitude control and maintains a rolling angle of 0 degrees during flight. The MyRIO oversees the retrieval of attitude and position data from the X-Plane flight simulator, offering feedback through actuator control. The development of the OADCS proceeded incrementally through stages utilizing the Software in the Loop Simulation (SILS) and Hardware in the Loop Simulation (HILS) techniques, to ensure the verification of the system's functionality before its application to the rocket for real flight testing. In the OADCS control scheme, Model Predictive Control (MPC) is chosen, and it is compared with a PID controller to serve as a benchmark for processing speed. Because the rocket's flight time is short and its speeds of up to Mach 4. The simulation results indicate that MPC can halt the rocket's rotation 12 times more rapidly than PID control. Additionally, the MPC's ability to maintain a zero-degree rotation can persist throughout the rocket's flight time. Employing SILS and HILS enhances the OADCS rocket development process by incorporating MPC, which holds promise for application in real rockets.
SISTEM PENYALA NIRKABEL JARAK JAUH UNTUK MUATAN ROKET (WIRELESS SWITCHING FOR ROCKET PAYLOAD) Artono, Endro; Salman, Salman
Indonesian Journal of Aerospace Vol. 16 No. 2 Desember (2018): Jurnal Teknologi Dirgantara
Publisher : BRIN Publishing

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30536/j.jtd.2018.v16.a2976

Abstract

Proses penyalaan sistem elektronika pada muatan roket hasil litbang LAPAN selama ini masih manual, dengan menggeser atau menekan saklar pada tabung muatan roket dari posisi mati (OFF) ke posisi hidup (ON). Sistem penyala muatan roket ini dirancang untuk dapat menyalakan atau mematikan muatan roket dengan tanpa melakukan kontak fisik antara operator dengan roket. Dari hasil penelitian ini, muatan roket dapat dinyalakan ataupun dimatikan dari ruang kontrol (ground station) secara nirkabel. Sistem ini juga dapat melepaskan perangkat antarmuka untuk sistem penyalaan dari badan roket, sehingga tidak mengganggu roket saat diluncurkan.  Currently, process for turning on the LAPAN rocket’s payload still manually, by shifting or pushing the manual switch placed on the payload rocket’s body, to the OFF or ON direction/ position. This payload wireless switching system is designed for turning the rocket payload to ON or OFF wirelessly, without any phisical contact from operator to the rocket body. The experiment proof that the rocket payload can be turning ON or OFF from the control room wirelessly. The system can also release the umbilical interface from the rocket body before the rocket launched to prevent disruption.