Claim Missing Document
Check
Articles

Found 4 Documents
Search

Model Predictive Control in Hardware in the Loop Simulation for the OnBoard Attitude Determination Control System Irwanto, Herma Yudhi; Yusgiantoro, Purnomo; Sahabuddin, Zainal Abidin; Bura, Romie O.; Artono, Endro; Hakim, Arif Nur; Nuryadi, Ratno; Andiarti, Rika; Mariani, Lilis
Journal of Robotics and Control (JRC) Vol 5, No 2 (2024)
Publisher : Universitas Muhammadiyah Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18196/jrc.v5i2.21613

Abstract

Rocket flight tests invariably serve a purpose, one of which involves area monitoring or aerial photography. Consequently, the rocket necessitates the installation of a camera that remains consistently oriented toward the Earth's surface throughout its trajectory. Thus, ensuring the rocket's stability and preventing any rotation becomes imperative. To achieve this, the Onboard Attitude Determination Control System (OADCS) was researched and developed, fully controlled by NI myRIO with Labview as the programming language, ensures the rocket's attitude control and maintains a rolling angle of 0 degrees during flight. The MyRIO oversees the retrieval of attitude and position data from the X-Plane flight simulator, offering feedback through actuator control. The development of the OADCS proceeded incrementally through stages utilizing the Software in the Loop Simulation (SILS) and Hardware in the Loop Simulation (HILS) techniques, to ensure the verification of the system's functionality before its application to the rocket for real flight testing. In the OADCS control scheme, Model Predictive Control (MPC) is chosen, and it is compared with a PID controller to serve as a benchmark for processing speed. Because the rocket's flight time is short and its speeds of up to Mach 4. The simulation results indicate that MPC can halt the rocket's rotation 12 times more rapidly than PID control. Additionally, the MPC's ability to maintain a zero-degree rotation can persist throughout the rocket's flight time. Employing SILS and HILS enhances the OADCS rocket development process by incorporating MPC, which holds promise for application in real rockets.
ANALISIS KINERJA ENJIN ROKET CAIR ECX1000H2-3 Hakim, Arif Nur; Tahdi, Hudoro; Rochman, Taufiqur
Indonesian Journal of Aerospace Vol. 16 No. 1 Juni (2018): Jurnal Teknologi Dirgantara
Publisher : BRIN Publishing

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30536/j.jtd.2018.v16.a2973

Abstract

Enjin roket cair ECX1000H2-3 telah dikembangkan dengan mengadopsi injektor konfigurasi baru untuk meningkatkan gaya dorong yang telah dicapai enjin sebelumnya. Injektor baru mempunyai jumlah lubang fuel dan oksidator masing-masing sebanyak 54 dan 156 dengan diameter sebesar 1 mm. Bentuk elemen injektor telah dimodifikasi untuk meningkatkan debit propelan. Uji static telah dilakukan untuk menguji kinerja sistem enjin secara keseluruhan. Hasil pengujian mencatat gaya dorong dan tekanan rata-rata sebesar 730 kgf dan 22,6 bar atau meningkat 19,7% dari hasil enjin sebelumnya, namun masih 84 % lebih rendah dari prediksi berdasarkan hasil uji injector dikarenakan kinerja sistem pengumpan yang tidak optimal. Selain itu, terjadi ledakan kecil saat penyalaan karena akumulasi propelan yang tidak terbakar akibat terbatasnya area kontak api penyalaan dengan propelan.
DESAIN NOSEL ROKET CAIR RCX250 MENGGUNAKAN METODE PARABOLIK DENGAN MODIFIKASI SUDUT EKSPANSI Priamadi, Eko; Hakim, Arif Nur; Bura, Romie O
Indonesian Journal of Aerospace Vol. 9 No. 1 Juni (2011): Jurnal Teknologi Dirgantara
Publisher : BRIN Publishing

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

The present research is conducted to design the optimum nozzles for RCX250 engine, that is designed to produce maximum thrust of 250 kgf with combination of LOX and Kerosene as its propellant. The new nozzles were determined to be parabolic nozzle, with conical nozzle as its comparison. The parabolic nozzle was designed using Thrust Optimized Parabolic (TOP) method invented by G.V.R.Rao. TOP nozzle design method is performed by approximating a Thrust Optimized Contoured (TOC) Nozzle using parabolic equation. The method would result more efficient nozzle than conical or ideal bell nozzle. Further, the parabolic nozzle were modified in its initial and exit angle to create uniform velocities distribution at nozzle exit. A Computational Fluid Dynamics Method (CFD) is used to simulate the nozzle designs. The simulation was carried out in axis-symmetric condition using commercial CFD software. The simulation results show that MOD 1 nozzle, with initial angle (θN) 26 deg and exit angle (θe) 12 deg, gives maximum thrust, which is 4.67 % higher than reference conical nozzle.
RANCANG BANGUN TABUNG KOMPOSIT TEKANAN TINGGI UNTUK PROPELAN ROKET CAIR KOROSIF (DESIGN OF COMPOSITE OVERWRAPPED PRESSURE VESSEL FOR CORROSIVE LIQUID ROCKET PROPELLANT) Hakim, Arif Nur
Indonesian Journal of Aerospace Vol. 13 No. 2 Desember (2015): Jurnal Teknologi Dirgantara
Publisher : BRIN Publishing

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Rancang bangun tabung komposit tekanan tinggi (COPV) telah dilakukan untuk memperkecil berat struktur tabung propelan wahana roket cair. Tekanan operasi yang diharapkan dari tabung ini adalah 150 bar dan harus mampu menahan asam nitrat yang bersifat sangat korosif. Simulasi numerik dilakukan untuk memprediksi kekuatan struktur tabung SS304. Stainless steel SS304 dipilih sebagai tabung liner karena karakteristik ketahanan yang bagus terhadap korosi dan biaya yang relatif murah. Tabung liner kemudian dilapisi dengan serat karbon dan resin epoxy EPR 174 secara manual dengan metode hand lay up. Uji hidrostatik dilakukan untuk menguji kekuatan tabung dan uji X-ray digunakan untuk menganalisa kondisinya setelah uji hidrostatik. Berat riil tabung komposit adalah 9,1 kg, atau 67% dari berat tabung yang menggunakan SS304 setebal 5,5 mm. Hasil pengujian menunjukkan bahwa tabung komposit tersebut dapat menahan tekanan statis hingga 200 bar, namun masih ada sedikit kebocoran. Stretching dilakukan pada pembebanan pertama dengan menaikkan tekanan secara perlahan-lahan sehingga tabung akan meregang secara tepat dan menjaga komposit tetap terikat pada tabung liner dan dapat mencegah kegagalan struktur hingga tekanan 200 bar.