Claim Missing Document
Check
Articles

Found 5 Documents
Search

PREDICTING FUTURE ENROLLMENT TRENDS AT UNIVERSITAS LANCANG KUNING USING ARIMA AND LSTM MODELS Sutejo, Sutejo; Fadrial, Yogi Ersan; Sadar, M.; Hasan, Mhd Arief
JURTEKSI (Jurnal Teknologi dan Sistem Informasi) Vol 11, No 3 (2025): Juni 2025
Publisher : Universitas Royal

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33330/jurteksi.v11i3.3865

Abstract

Abstract: This research is driven by the challenges faced by Universitas Lancang Kuning (UNILAK) in attracting applicants amidst intense competition, especially after the government's policy opened independent pathways to State Universities (PTN) from 2022-2023, which impacted private university applicant numbers. To address this and support strategic planning, this study aims to predict the trend of prospective students applying to all study programs at UNILAK for the period 2025-2027. Two time series models were employed: ARIMA (AutoRegressive Integrated Moving Average) and LSTM (Long Short-Term Memory). Applicant data from 2019 to 2024 was used to build the model. The Augmented Dickey-Fuller (ADF) test confirmed the data's stationarity with a p-value of 0.0. ACF and PACF analyses determined the ARIMA parameters as p=1, d=1, q=1. The LSTM model was trained to capture more complex data patterns. ARIMA predictions for 2025, 2026, and 2027 are 3298.66, 3362.33, and 3371.30, respectively. LSTM predictions for the same years are 3335.64, 3476.52, and 3518.42. Evaluation using Root Mean Squared Error (RMSE) showed ARIMA (RMSE=588.72) to be more accurate than LSTM (RMSE=653.96). Nevertheless, LSTM provided a more optimistic prediction. This study concludes that ARIMA is better suited for short-term planning, while LSTM can be used for more ambitious long-term strategies. Keywords: arima; LSTM; applicants; prediction; university Abstrak: Penelitian ini didorong oleh tantangan Universitas Lancang Kuning (UNILAK) dalam menarik pendaftar di tengah persaingan ketat, khususnya setelah kebijakan pemerintah membuka jalur mandiri ke Perguruan Tinggi Negeri (PTN) sejak 2022-2023, yang menyebabkan penurunan jumlah pendaftar di universitas swasta. Untuk mendukung perencanaan strategis, studi ini bertujuan memprediksi tren jumlah calon mahasiswa yang mendaftar ke seluruh program studi di UNILAK untuk periode 2025-2027.Dua model deret waktu digunakan: ARIMA (AutoRegressive Integrated Moving Average) dan LSTM (Long Short-Term Memory). Data jumlah pendaftar dari 2019 hingga 2024 digunakan untuk membangun model. Uji Augmented Dickey-Fuller (ADF) menunjukkan data stasioner dengan p-value 0,0. Analisis ACF dan PACF menentukan parameter ARIMA sebagai p=1, d=1, q=1. Model LSTM dilatih untuk menangkap pola data yang lebih kompleks.Prediksi ARIMA untuk 2025, 2026, dan 2027 adalah 3298.66, 3362.33, dan 3371.30. Prediksi LSTM untuk tahun yang sama adalah 3335.64, 3476.52, dan 3518.42. Evaluasi menggunakan Root Mean Squared Error (RMSE) menunjukkan ARIMA (RMSE=588.72) lebih akurat daripada LSTM (RMSE=653.96). Meskipun demikian, LSTM memberikan prediksi yang lebih optimis. Studi ini menyimpulkan ARIMA lebih cocok untuk perencanaan jangka pendek, sementara LSTM dapat digunakan untuk strategi jangka panjang yang ambisius. Kata kunci: arima; LSTM; pendaftar; prediksi; universitas 
KLASTERISASI TINGKAT KEPEDULIAN MASYARAKAT KOTA PEKANBARU TERHADAP BENCANA KEBAKARAN DENGAN METODE K-MEANS DAN K-MEDOIDS Fadrial, Yogi Ersan; Yunefri, Yogi; Sutejo, Sutejo; Fajrizal, Fajrizal; Syahtriatna, Syahtriatna
ZONAsi: Jurnal Sistem Informasi Vol. 7 No. 1 (2025): Publikasi artikel ZONAsi: Jurnal Sistem Informasi Periode Januari 2025
Publisher : Universitas Lancang Kuning

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31849/zn.v7i1.22615

Abstract

Penelitian ini bertujuan untuk melakukan klusterisasi tingkat kepedulian masyarakat Kota Pekanbaru terhadap bencana kebakaran menggunakan metode K-Means dan K-Medoids. Metode klusterisasi ini diterapkan untuk mengelompokkan masyarakat berdasarkan tingkat kepedulian mereka terhadap bencana kebakaran, sehingga dapat membantu dalam perencanaan penanganan dan mitigasi bencana. Dalam penelitian ini, data mining clustering digunakan untuk menganalisis pola kepedulian masyarakat dengan memanfaatkan tools Google Colaboratory. Hasil dari penelitian ini diharapkan dapat memberikan gambaran yang lebih jelas tentang kelompok-kelompok masyarakat yang memiliki tingkat kepedulian berbeda terhadap bencana kebakaran di Kota Pekanbaru.
Online Learning Satisfaction Analysis of the Faculty of Computer Science Using the Fuzzy Logic Method Fadrial, Yogi Ersan; Ambiyar, Ambiyar; Fadhilah, Fadhilah; Syahril, Syahril; Novendra, Rizki; Sutejo, Sutejo
Jurnal Pendidikan MIPA Vol 22, No 2 (2021): Jurnal Pendidikan MIPA
Publisher : FKIP Universitas Lampung

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Abstract: Online learning is learning that uses the internet network with accessibility, connectivity, flexibility, and the ability to bring up various types of learning interactions. Satisfaction is a person's feelings of pleasure or disappointment that arise after comparing his perceptions of the performance or results of a product and his expectations. Research on student perceptions of online learning is limited to aspects of teaching and learning, the ability of lecturers, facilities and infrastructure. To get results from the perception or opinion of a student from the level of satisfaction of online lectures, it can be done using the Mamdani Fuzzy logic method and for calculations using the Slovin formula.Keywords: technology, fuzzy logic, online learning, model. DOI: http://dx.doi.org/10.23960/jpmipa/v22i2.pp256-261
Assessing the Acceptance of Blended Learning Implementation in Universitas Lancang Kuning using the Technology Acceptance Model Novendra, Rizki; Ambiyar, Ambiyar; Fadhilah, Fadhilah; Syahril, Syahril; Sutejo, Sutejo; Fadrial, Yogi Ersan
Jurnal Pendidikan MIPA Vol 22, No 2 (2021): Jurnal Pendidikan MIPA
Publisher : FKIP Universitas Lampung

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

The Covid-19 pandemic has forced learning activities to be carried out online. In response to this, Universitas Lancang Kuning, which has implemented the Blended Learning application, wants to measure the level of use and understand the factors that influence the acceptance of the system in an agency. The study was conducted at the Unilak Fasilkom with 92 samples. Data obtained by distributing questionnaires based on indicators and variables of the technology acceptance modelling method. The results of this study indicate that the multiple regression analysis of the variables that have an influence on the real condition of information users is the variable Benefits of using information systems (X1), User Ease of Information Systems (X2), and User Attitudes towards Information Systems (X3) have a significant influence on real condition of information system users (Y). Meanwhile, the behavior of information system users (X4) has no effect.Keywords: technology acceptance model, blended learning, covid-19 pandemic. DOI: http://dx.doi.org/10.23960/jpmipa/v22i2.pp198-205
PREDICTING FUTURE ENROLLMENT TRENDS AT UNIVERSITAS LANCANG KUNING USING ARIMA AND LSTM MODELS Sutejo, Sutejo; Fadrial, Yogi Ersan; Sadar, M.; Hasan, Mhd Arief
JURTEKSI (jurnal Teknologi dan Sistem Informasi) Vol. 11 No. 3 (2025): Juni 2025
Publisher : Lembaga Penelitian dan Pengabdian Kepada Masyarakat (LPPM) STMIK Royal Kisaran

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33330/jurteksi.v11i3.3865

Abstract

Abstract: This research is driven by the challenges faced by Universitas Lancang Kuning (UNILAK) in attracting applicants amidst intense competition, especially after the government's policy opened independent pathways to State Universities (PTN) from 2022-2023, which impacted private university applicant numbers. To address this and support strategic planning, this study aims to predict the trend of prospective students applying to all study programs at UNILAK for the period 2025-2027. Two time series models were employed: ARIMA (AutoRegressive Integrated Moving Average) and LSTM (Long Short-Term Memory). Applicant data from 2019 to 2024 was used to build the model. The Augmented Dickey-Fuller (ADF) test confirmed the data's stationarity with a p-value of 0.0. ACF and PACF analyses determined the ARIMA parameters as p=1, d=1, q=1. The LSTM model was trained to capture more complex data patterns. ARIMA predictions for 2025, 2026, and 2027 are 3298.66, 3362.33, and 3371.30, respectively. LSTM predictions for the same years are 3335.64, 3476.52, and 3518.42. Evaluation using Root Mean Squared Error (RMSE) showed ARIMA (RMSE=588.72) to be more accurate than LSTM (RMSE=653.96). Nevertheless, LSTM provided a more optimistic prediction. This study concludes that ARIMA is better suited for short-term planning, while LSTM can be used for more ambitious long-term strategies. Keywords: arima; LSTM; applicants; prediction; university Abstrak: Penelitian ini didorong oleh tantangan Universitas Lancang Kuning (UNILAK) dalam menarik pendaftar di tengah persaingan ketat, khususnya setelah kebijakan pemerintah membuka jalur mandiri ke Perguruan Tinggi Negeri (PTN) sejak 2022-2023, yang menyebabkan penurunan jumlah pendaftar di universitas swasta. Untuk mendukung perencanaan strategis, studi ini bertujuan memprediksi tren jumlah calon mahasiswa yang mendaftar ke seluruh program studi di UNILAK untuk periode 2025-2027.Dua model deret waktu digunakan: ARIMA (AutoRegressive Integrated Moving Average) dan LSTM (Long Short-Term Memory). Data jumlah pendaftar dari 2019 hingga 2024 digunakan untuk membangun model. Uji Augmented Dickey-Fuller (ADF) menunjukkan data stasioner dengan p-value 0,0. Analisis ACF dan PACF menentukan parameter ARIMA sebagai p=1, d=1, q=1. Model LSTM dilatih untuk menangkap pola data yang lebih kompleks.Prediksi ARIMA untuk 2025, 2026, dan 2027 adalah 3298.66, 3362.33, dan 3371.30. Prediksi LSTM untuk tahun yang sama adalah 3335.64, 3476.52, dan 3518.42. Evaluasi menggunakan Root Mean Squared Error (RMSE) menunjukkan ARIMA (RMSE=588.72) lebih akurat daripada LSTM (RMSE=653.96). Meskipun demikian, LSTM memberikan prediksi yang lebih optimis. Studi ini menyimpulkan ARIMA lebih cocok untuk perencanaan jangka pendek, sementara LSTM dapat digunakan untuk strategi jangka panjang yang ambisius. Kata kunci: arima; LSTM; pendaftar; prediksi; universitas