Claim Missing Document
Check
Articles

Found 12 Documents
Search

Comparative Analysis of PID-Driven Data-Based and PSO-Tuned Fuzzy Membership Functions for Robotic Manipulator Control Chotikunnan, Phichitphon; Khotakham, Wanida; Imura, Pariwat; Chotikunnan, Rawiphon; Wongkamhang, Anantasak; Thongpance, Nuntachai
Journal of Fuzzy Systems and Control Vol. 3 No. 3 (2025): Vol. 3 No. 3 (2025)
Publisher : Peneliti Teknologi Teknik Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.59247/jfsc.v3i3.335

Abstract

Robotic manipulators require control systems that are both responsive and precise in order to ensure accurate tracking and stability in dynamic environments. Conventional fuzzy logic controllers that are based on proportional integral derivative (PID) methods frequently encounter difficulties in achieving fast response, minimal steady-state error, and low overshoot. This study presents a comparative evaluation of a PID-driven data-based fuzzy logic controller and a particle swarm optimization (PSO) tuned fuzzy logic controller for a three-axis robotic manipulator implemented in Simulink. Both controllers used Gaussian membership functions within a Mamdani inference structure. The PSO algorithm was employed to optimize fuzzy input-scaling gains using a composite performance index that incorporated absolute error, control effort, overshoot penalty, and steady-state error. The simulation results indicate that the PSO-tuned controller consistently outperformed the benchmark. On the R-axis, it shortened rise and settling times and reduced overshoot, mean absolute error (MAE), and root mean square error (RMSE). On the T-axis, response speed and error values improved, although overshoot increased, indicating a trade-off between speed and stability. On the Z-axis, the PSO controller achieved a substantial decrease in overshoot, lower error metrics, and faster stabilization. Overall, the PSO-based tuning process preserved steady-state stability while improving transient performance on all axes. These findings show that metaheuristic optimization is an effective and practical method for enhancing fuzzy logic controllers in robotic manipulators. This approach has potential applications in precision manufacturing, service automation, and surgical robotics.
Design an Infusion Device Analyzer with Flow Rate Parameters using High Sensitive Photodiode Sensor Pudji, Andjar; Maghfiroh, Anita Miftahul; Thongpance, Nuntachai
Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol. 3 No. 2 (2021): May
Publisher : Jurusan Teknik Elektromedik, Politeknik Kesehatan Kemenkes Surabaya, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/ijeeemi.v3i2.201

Abstract

Infusion devices are the basis for primary health care, that is to provide medicine, nutrition, and hydration to patients. One of the infusion devices is a syringe pump and an infusion pump. This device is very important to assist the volume and flow that enters the patient's body, especially in situations related to neonatology or cancer treatment. Therefore, a comparison tool is needed to see whether the equipment is used or not. The purpose of this research is to make an infusion device analyzer (IDA) design with a flow rate parameter. The contribution of this research is that the tool can calculate the correct value of the flow rate that comes out of the infusion pump and syringe pump. The water released by the infusion pump or syringe pump will be converted into droplets which are then detected by the sensor. This tool uses an infrared sensor and a photodiode. The results obtained by the sensor will come by Arduino nano and code it to the 16x2 Character Liquid Crystal Display (LCD) and can be stored on an SD Card so that it can be analyzed further. In setting the flow rate for the syringe pump of 100 mL / hour, the error value is 3.9, 50 ml / hour 0.02, 20 mL / hour 0.378, 10 mL / hour 0.048, and 5 mL / hour 0.01. The results show that the average error of the syringe pump performance read by the module is 0.87. The results obtained from this study can be implemented for the calibration of the infusion pump and the syringe pump so that it can be determined whether the device is suitable or not