Claim Missing Document
Check
Articles

Found 22 Documents
Search

Design and Implementation MPPT Improved Whale Optimization Algorithm to Overcome Partial Shading Condition on Solar Panel Habibi, Muhammad Nizar; Prakoso, Rifqi Noviantono; Adila, Ahmad Firyal; Efendi, Moh. Zaenal; Windarko, Novie Ayub; Eviningsih, Rachma Prilian
invotek Vol 24 No 2 (2024): INVOTEK: Jurnal Inovasi Vokasional dan Teknologi
Publisher : Universitas Negeri Padang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24036/invotek.v24i2.1219

Abstract

Solar energy is a type of renewable energy whose capacity is tremendous and fast in increasing its capacity so that it can be used for energy sustainability in the future. Solar panels are the only devices that can be used to utilize solar energy. Maximum Power Point Tracking (MPPT) is a method to maximize the power generated by solar panels. However, the problem with solar panels is the condition of partial shading, this occurs due to something blocking the rate of solar irradiation to the solar panel. The result is that there are 2 or more maximum power points from solar panels, the highest power is the Global Maximum Power Point (GMPP) and the other is the Local Maximum Power Point (LMPP). This partial shading condition cannot use conventional MPPT methods due to the complexity of finding GMPP. So, MPPT optimization method is needed, one of which is the Improved Whale Optimization Algorithm (IWOA). IWOA is a development of the Whale Optimization Algorithm (WOA) by applying the Sine-Tent-Cosine Map for the first time the algorithm works to be more effective in the initialization process of the algorithm population and can ensure a more uniform distribution of population distribution throughout the search space. IWOA will be applied to the MPPT system to achieve the GMPP of the solar panel under partial shading conditions.
Temperature and Humidity Control System for Pole-Mounted Metering Circuit Breaker with Artificial Neural Network Methods Ahmad, Mirza Ghulam; Efendi, Moh. Zaenal; Eviningsih, Rachma Prilian
ELKHA : Jurnal Teknik Elektro Vol. 15 No.2 October 2023
Publisher : Faculty of Engineering, Universitas Tanjungpura

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26418/elkha.v15i2.67933

Abstract

Pole-mounted Metering Circuit Breaker (PMCB) is a medium voltage protection device. Problems in the PMCB because operating at medium voltage causes insulation problems. The isolation problem that arises is due to partial discharge. Partial discharge can trigger the risk of flashover. In addition, corona discharge causes corrosion of the conductor, the effect is a failure and disconnection of electricity. This control system aims to maintain the temperature and humidity of the PMCB at the nominal values according to the standard. Based on SPLN D3.021-1:2020, it is known that under normal service conditions, the ambient air temperature does not exceed 40 °C and the average temperature for 24 hours does not exceed 35 °C and the highest relative humidity is 100% RH. The control system uses an AC voltage controller which is used to control the input voltage of the heater and exhaust fan so that the temperature and humidity can reach nominal operating conditions. The control method used is an artificial neural network (ANN) to find the ignition angle of the AC voltage controller as a TRIAC control. The test results using the ANN control method, system simulation produces a temperature error of 1.029% and humidity error of 2.48% and the hardware system produces a temperature error of 2.364% and humidity error of 8.673% compared to the set point temperature of 35 °C and humidity of 50% RH. It can be concluded that the ANN control method can maintain the PMCB temperature and humidity according to standards