Claim Missing Document
Check
Articles

Found 2 Documents
Search

Density Functional Theory for QSAR Antioxidant Compound Myristicin Derivatives Muliadi, Muliadi; Basimin, Mudzuna Quraisyah; Jayali, Ahmad Muchsin
Indonesian Journal of Chemical Research Vol 9 No 1 (2021): Edition for May 2021
Publisher : Jurusan Kimia, Fakultas Sains dan Teknologi, Universitas Pattimura

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30598/ijcr.2021.9-mul

Abstract

This research was conducted to determine the molecular structure modeling and the quantitative relationship of the activity structure (QSAR) of substituted myristicin derivatives with electron donor groups such as -C6H5 (M1), -NH2 (M2), -Cl (M3), -F (M4), and -H (M5). The results of geometry optimization with the DFT (Density Fractal Theory) method or density functional calculations calculated with the density level of B3LYP/6-31G each obtained the total energy of each compound M1- M5: M1: 175.49 kcal/mol M2: 132.707 kcal/mol, M3: 115.701 kcal/mol, M4: 116.048 kcal/mol, M5: 121.377 kcal/mol. Determining the relationship between descriptors and the antioxidant activity (IC50) for basic structure myristicin compounds and five derivatives was carried out using SPSS 21. The results of the correlation analysis showed that there was a relationship between the descriptors and antioxidant activity. Determining the best QSAR equation model is done by analyzing multiple linear and multilinear regression using IBM SPSS 21. The results of multiple linear regression analysis or multilinear regression obtained for the best QSAR equation model are: Log P = -2.600 + (0.006) IW- (1.558) qC8 - (6.532) EHOMO + (0.014) PSA + (0.133) MD with n = 6, R = 1.000, R2 = 0.926, SE = 0.
Higher Order Thinking Skills and Visual Representations of Chemical Concepts: A Literature Review Basimin, Mudzuna Quraisyah; Habiddin, Habiddin; Joharmawan, Ridwan
Hydrogen: Jurnal Kependidikan Kimia Vol. 11 No. 6 (2023): December 2023
Publisher : Universitas Pendidikan Mandalika

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33394/hjkk.v11i6.10173

Abstract

Efforts to assist students in understanding generally abstract chemical concepts are widely done using visual representations as a form of multiple representations in chemistry. This article evaluates and identifies articles from the year (2013-2023) through search engines that provide international services and national journal pages that can be accessed using 4 databases, namely, science direct, eric, google scholar, and crossref. Based on predefined criteria for the use of visual representation in chemistry to improve Higher Order Thinking Skills, 13 relevant articles were obtained. The results of the review show that visual representation can be utilized to train and improve higher-order thinking skills, especially critical, logical, reflective, metacognitive, and creative thinking. Visual representation has also been applied to several approaches or learning models such as Multiple Representation, Particulate Representation, 5R, SWH, Marzano's Taxonomy, Use of Concept Maps, and PcBL.