Claim Missing Document
Check
Articles

Found 3 Documents
Search
Journal : Bulletin of Chemical Reaction Engineering

Efficient Adsorption of Methylene Blue Dye Using Ni/Al Layered Double Hydroxide-Graphene Oxide Composite Amri, Amri; Wibiyan, Sahrul; Wijaya, Alfan; Ahmad, Nur; Mohadi, Risfidian; Lesbani, Aldes
Bulletin of Chemical Reaction Engineering & Catalysis 2024: BCREC Volume 19 Issue 2 Year 2024 (August 2024)
Publisher : Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.20121

Abstract

To address environmental pollution, we developed Ni/Al layered double hydroxide-graphene oxide (Ni/Al-GO) adsorbent materials for the purpose of eliminating methylene blue (MB) dye pollutants. The adsorption process was explored by examining many experimental factors, including temperature, regeneration/reuse procedure, pH, and time, and their effects on the material. The appropriate model for the isotherm is the Langmuir isotherm. The Ni/Al-GO material achieved a maximum adsorption capacity of 61.35 mg/g for MB dye at a temperature of 60 °C. The thermodynamic characteristics indicate that the adsorption process is both endothermic and spontaneous as the temperature increases. The regeneration method demonstrated that the Ni/Al-GO material has a highly stable structure, enabling it to be utilized for five cycles with a remarkable regeneration rate of 93.49% in the fifth cycle. The pH that yielded the best results for all materials was pH 10, and the kinetic model demonstrated a pseudo second-order behavior. Copyright © 2024 by Authors, Published by MKICS and BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).
CuAl-LDH Modified with Filamentous Macroalgae for Anionic Dyes Removal: A Study on Selectivity, Adsorption Efficiency, and Regeneration Wijaya, Alfan; Hanum, Laila; Melwita, Elda; Lesbani, Aldes
Bulletin of Chemical Reaction Engineering & Catalysis 2024: BCREC Volume 19 Issue 4 Year 2024 (December 2024)
Publisher : Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.20223

Abstract

Continuous modifications of Layered Double Hydroxides (LDH) materials are essential to enhance their structural stability and improve their capacity for pollutant adsorption, addressing the need for more effective remediation strategies in environmental applications. This research study has proposed the preparation of CuAl-LDH supported filamentous macroalgae of Spirogyra sp. (CuAl-LDH/SA) via coprecipitation and hydrothermal methods. The prepared CuAl-LDH/SA composites were investigated for the adsorption of direct yellow 12 (DY) and remazol red (RR) dyes in batch mode experiments. The structure and morphology of the prepared CuAl-LDH/SA were identified by X-ray Diffraction (XRD), Fourier Transform Infra Red (FT-IR), (Brunauer-Emmett-Teller) BET surface area, Thermogravimetry / Differential Thermal Analyzer (TG/DTA), and Scanning Electron Microscope (SEM). For the adsorption process, the effects of initial pH, contact time, initial concentration, temperature, adsorption selectivity, and adsorbent regeneration, as well as kinetics, isotherms, and thermodynamics were studied. The adsorption selectivity test resulted in the RR dye being more selective compared to DY. The maximum capacities for RR adsorption were 72.464 mg/g (pH = 2, 150 min, 303 K). CuAl-LDH/SA can be regenerated for 4 cycles with a percent removal of 29.32%. The adsorption process followed the intraparticle diffusion kinetics model and Langmuir isotherm. Thermodynamic studies showed that the adsorption of RR using CuAl-LDH/SA was endothermic and spontaneous. The results of this study indicate that CuAl-LDH/SA composite material shows potential material in the removal of anionic dyes from aqueous solutions. Copyright © 2024 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).
Recycle Performance of Heterogeneous Catalyst Metal Oxides-Based Layered Double Hydroxide for Oxidative Desulfurization Process of 4-methyldibenzothiophene Ahmad, Nur; Rohmatullaili, Rohmatullaili; Hanifah, Yulizah; Wibiyan, Sahrul; Amri, Amri; Wijaya, Alfan; Mardiyanto, Mardiyanto; Mohadi, Risfidian; Royani, Idha; Lesbani, Aldes
Bulletin of Chemical Reaction Engineering & Catalysis 2023: BCREC Volume 18 Issue 4 Year 2023 (December 2023)
Publisher : Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.20034

Abstract

The desulfurization of oil must be resolved as soon as possible due to a variety of issues, including environmental contamination and protection regulations. It was believed that oxidative desulfurization (ODS) was the most promising method. In this research, metal oxide-based layered double hydroxides (TiO2@Ni-Al and ZnO@Ni-Al) were effectively synthesized for the ODS of 4-methyldibenzothiophene (4-MDBT). TiO2@Ni-Al and ZnO@Ni-Al exhibited superior catalytic performance and high recycling capacity, achieving a 99% removal rate after five reactions in 30 min. The heterogeneous catalyst TiO2@Ni-Al/ZnO@Ni-Al is easy to separate and recover from a reaction system. Increased temperature facilitates the transformation of 4-MDBT into 4-MDBTO2. The influence of H2O2's rapid decomposition rate, which can inhibit oxidation reactions, reduces the catalytic activity as the temperature increases. 4-MDBT Sulphur removal on TiO2@Ni-Al and ZnO@Ni-Al is 99.48 and 99.51%, respectively. TiO2@Ni-Al and ZnO@Ni-Al have great potential for use in the industry based on these results. Copyright © 2023 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).