Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Techno.Com: Jurnal Teknologi Informasi

Implementasi K-Means Clustering untuk Analisis Non-Numerik Dataset Spare Part Mobil Utami, Mailia Putri; Rahma, Gita Mustika; Suroso, Finna
Techno.Com Vol. 23 No. 2 (2024): Mei 2024
Publisher : LPPM Universitas Dian Nuswantoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62411/tc.v23i2.9446

Abstract

Industri otomotif merupakan salah satu sector ekonomik terbesar di dunia, dengan berbagai rantai pasok yang kompleks. Kompleksitas data otomotif yang beragai sering kali banyak mengandung atribut data non-numerik, seperti nama, jenis spare part, merk, dan atribut kualitatif lainnya. Analisis non-nurmerik dapat memberikan wawasan berharga dengan pola dan hubungan antar suku cadang. Tujuan dari penelitian ini yaitu untuk mengembangkan metode k-means clustering pada dataset spare part yang mengandung atribut non-numerik. K-means clustering adalah Teknik yang umumnya digunakan untuk analisis data numerik dan memerlukan modifikasi atau keterlibatan metode lain dalam mengatasi data non-numerik. Adapun proses yang dilibatkan yaitu proses normalisasi dengan menggunakan metode binning. Implementasi K-means Clustering pada dataset non-numerik memiliki manfaat potensial. Pertama, itu memungkinkan identifikasi kelompok dari suku cadang yang memiliki karakterisktik serupa, yang dapat digunakan untuk mengelompokkan produk serupa. Kedua yaitu untuk membantu dalam pengelolaan ketersedian dengan lebih efisien, menghindari kelebihan persedian, dan memenuhi permintaan pelanggan dengan lebih baik. Penelitian ini menghadapi tantangan dalam menentukan metrik kesamaan yang tepat untuk data non-numerik dan dalam menentukan jumlah cluster yang optimal. Namun, metodologi yang cermat dan eksperimen yang bekelanjutan, mampu mengembangkan pendekatan yang dapat digunakan dalam pengelompokan suku cadang mobil non-numerik. Hasil dari penelitian ini diperoleh sebaran data dengan menggunkan cluster K=2 dengan nilai Silhouette sebagai nilai dari sebaran data yaitu 0,925.
Integrasi Algoritma Support Vector Machine dengan Java untuk Memprediksi Kualitas Komponen Otomotif dalam Industri 4.0 Utami, Mailia Putri; Suroso, Finna; Lailasari H. , Fifi; Sibuea, Febry P.J.; Chandra, Kevin
Techno.Com Vol. 24 No. 3 (2025): Agustus 2025
Publisher : LPPM Universitas Dian Nuswantoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62411/tc.v24i3.12719

Abstract

Industri 4.0 menandai transformasi besar dalam sektor manufaktur, termasuk industri otomotif, dengan integrasi teknologi cerdas seperti machine learning untuk meningkatkan efisiensi dan kualitas produksi. Penelitian ini mengkaji penerapan algoritma Support Vector Machine (SVM) yang diintegrasikan dengan bahasa pemrograman Java untuk memprediksi kualitas komponen otomotif secara akurat. SVM dikenal efektif dalam klasifikasi data yang kompleks dan sangat cocok untuk lingkungan produksi yang memerlukan ketepatan tinggi. Proses penelitian mencakup pengumpulan dan pra-pemrosesan data kualitas komponen, pelatihan model SVM, serta implementasi model dalam platform Java guna memungkinkan integrasi dengan sistem otomasi industri yang telah ada. Hasil pengujian menunjukkan bahwa model SVM yang dibangun mampu mengklasifikasikan kualitas komponen dengan akurasi yang tinggi, memberikan potensi signifikan dalam pengurangan produk cacat dan peningkatan efisiensi produksi. Integrasi dengan Java memungkinkan sistem prediksi ini mudah diimplementasikan dalam infrastruktur perangkat lunak industri yang berbasis Java. Penelitian ini menunjukkan bahwa kombinasi machine learning dan pemrograman terapan dapat menjadi solusi strategis dalam mendukung transformasi digital industri otomotif di era Industri 4.0.   Kata kunci - Support Vector Machine (SVM), Java, Prediksi Kualitas, Komponen Otomotif, Industri 4.0