Claim Missing Document
Check
Articles

Found 5 Documents
Search

Pelatihan Cara Pembuatan Database Untuk Pengarsipan Di Desa Sei Mencirim Sunggal Aulia Rahmah, Sabrina; Yasir, Amru; Sinaga, Kariaman; Rahman Syahputra, Edy
Jurnal Pengabdian Masyarakat Vol. 1 No. 2 (2022): Desember 2022
Publisher : Unity Academy

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.70340/japamas.v1i2.25

Abstract

One of the tasks in the tri dharma of higher education for a lecturer is to carry out community service activities. The purpose of this community service activity is to provide knowledge to the community directly through the training held. One of the training objects given to employees in Sei Mencirim Sunggal Village. The training provided is about creating and managing databases to make it easier to archive letters in the village. The database is an information system that functions to input and process data in a commercialized manner that can be used at any time by users of the system.
Promosi Jasa Menjahit Berbasis Web dengan Fitur Live Chat (Studi Kasus Okta Tailor): Array Yani Siahaan, Clara Martha; Rahman Syahputra, Edy; Nurjamiyah, Nurjamiyah
Jurnal Ilmu Komputer dan Sistem Komputer Terapan (JIKSTRA) Vol. 2 No. 2 (2020): Edisi Oktober
Publisher : Universitas Harapan Medan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35447/jikstra.v2i2.272

Abstract

Live chat applications have become an attraction for smartphone users. Live chat application users can communicate with fellow users without any time and distance restrictions. So that it can make it easier for users to communicate between fellow users. The development method in building a Web-Based Sewing Service Promotion with the Live Chat Feature Okta Tailor Case Study is based on the agile method. The agile method consists of planning, namely the plan for making the system, requirements analysis, which is to analyze the making of the application content, design, namely to describe the appearance of the application, testing, namely for application testing, and documentation, namely to document the application results. The purpose of this research is to produce Web-Based Sewing Services Promotion with Live Chat Feature for Okta Tailor Case Studies, with the application of this system to expand the sewing service business on Okta Tailor.
Perjalanan Dinas Berbasis WEB (Studi Kasus : DPRD Kota Medan) Fakhrul Rizkie, Dwi; Rahman Syahputra, Edy; Rahayu, Eka
Jurnal Ilmu Komputer dan Sistem Informasi (JIKOMSI) Vol. 7 No. 1 (2024): Jurnal Ilmu Komputer dan Sistem Informasi
Publisher : Utility Project Solution

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55338/jikomsi.v7i1.2878

Abstract

DPRD Kota Medan data perjalanan dinas nya masih belum memiliki sistem pengelolaan data perjalanan dinas yang baik sehingga ketika akan mengelola data perjalanan dinas di DPRD Kota Medan masih sering terjadi kesalahan. Penelitian ini bertujuan untuk  merancang sistem informasi perjalanan dinas yang memiliki fitur  kelola fakta integritas yang memiliki fungsi pembuatan surat perjalanan dinas DPRD Kota Medan berbasis website. sistem informasi yang bisa membantu meringkaskan dan memudahkan pengerjaan pengolahan urusan perjalanan dinas khususnya pada  DPRD Kota Medan. Perancangan dan pembangunan Sistem Informasi Surat Perintah Perjalanan Dinas merupakan salah satu upaya dalam pemanfaatan perkembangan teknologi, sehingga pengolahan surat perintah perjalanan dinas seperti pembuatan surat-surat yang dibutuhkan untuk urusan perjalanan dinas dapat lebih mudah     diselesaikan.
DETEKSI KATA SERAPAN TERHADAP DOKUMEN MENGGUNAKAN PENDEKATAN DEEP LEARNING Halimardani, Windi; Rahman Syahputra, Edy; Lubis, Husni
Syntax : Journal of Software Engineering, Computer Science and Information Technology Vol 4, No 2 (2023): Desember 2023
Publisher : Universitas Dharmawangsa

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.46576/syntax.v4i2.4164

Abstract

Penelitian ini bertujuan untuk mengembangkan sebuah metode deteksi kata serapan dalam dokumen teks menggunakan pendekatan Deep Learning. Kata serapan adalah kata-kata yang berasal dari bahasa asing dan telah diadopsi ke dalam bahasa lokal. Metode ini memiliki potensi untuk mengidentifikasi kata serapan dengan akurasi yang tinggi, bahkan dalam konteks dokumen yang besar dan beragam. Pendekatan Deep Learning akan digunakan dalam analisis teks untuk mengambil fitur-fitur yang relevan dan kompleks dari kata-kata dalam dokumen. Model Deep Learning yang akan dibangun dapat memahami konteks penggunaan kata serapan dalam bahasa lokal, serta dapat membedakannya dari kata-kata asli bahasa tersebut. Selain memberikan solusi untuk tugas deteksi kata serapan, penelitian ini juga akan menggali potensi penerapan Deep Learning dalam pemrosesan teks dan linguistik komputasional. Hasil dari penelitian ini diharapkan dapat membantu dalam memahami lebih baik aspek-aspek bahasa yang berkaitan dengan kata serapan, serta dapat berguna dalam aplikasi yang berkaitan dengan analisis teks seperti terjemahan otomatis, analisis sentimen, dan banyak lagi.Kata Kunci: Serapan, Deteksi, Deep learning
Low-Resolution Face Image Reconstruction Using Multi-Stage FSRCNN to Improve Face Detection and Tracking Accuracy in CCTV Surveillance Tommy, -; Siregar, Rosyidah; Rahman Syahputra, Edy
JOIV : International Journal on Informatics Visualization Vol 9, No 3 (2025)
Publisher : Society of Visual Informatics

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62527/joiv.9.3.3160

Abstract

Face detection and tracking under real-world condition remain challenging under different illumination, crowded scenes, partial occlusions and small or low-resolution face images. In traditional face tracking schemes, these factors often cause the false positive rate to be high and the accuracy to be low. Specifically, little or no detailed information is presented for small or distant faces, here the reliability of detection is diminished and non-face-object can provoke false alarms thus degrading the performance of a system in general. Such problems are not unclear and need a sophisticated solution to improve the resolution and detection performance in various scenarios. In this paper, a new face tracking system based on a cascade classifier, a two-step model of Fast Super-Resolution Convolutional Neural Network (FSRCNN) and DLib face validator is presented. The low-resolution facial parts are first enhanced by the FSRCNN to optimize the detection by the cascade classifier. The DLib face validator improves the approach by validating the discovered faces, and reducing false positives. The system was tested over a CCTV scenario video corpus of several challenging conditions represented by crowded environments, dynamic object and human faces of different sizes and locations. The performance analysis focused on performance metrics such as precision, recall, and false positive rate, which provided a comprehensive overview of the system's robustness. The results demonstrate a significant improvement in face detection accuracy, as high as 98% precision and very few false positive detections. The synergy between the FSRCNN method and the DLib validation was especially effective on small and far-away faces, which are normally difficult to perceive. Whilst their improvements on memory consumption were small, they proved effective for face detection in challenging conditions. The ability of the system to maintain high measurement accuracy while avoiding errors makes it well suited for use in surveillance, security and monitoring systems. In conclusion, this research highlights the effectiveness of combining super-resolution techniques with traditional face detection methods to address the limitations of existing systems. The future work will focus on increasing recall rate and constantly maturing the extraction system to work well in various realistic conditions, thus making it effective and general for different applications.