p-Index From 2021 - 2026
5.786
P-Index
This Author published in this journals
All Journal PROSIDING SEMINAR NASIONAL Autotech: Jurnal Pendidikan Teknik Otomotif Universitas Muhammadiyah Purworejo E-Bisnis : Jurnal Ilmiah Ekonomi dan Bisnis Elkom: Jurnal Elektronika dan Komputer PROCESSOR Jurnal Ilmiah Sistem Informasi, Teknologi Informasi dan Sistem Komputer MANAJEMEN Jurnal Pengabdian kepada Masyarakat Indonesia (JPKMI) Journal of Engineering, Electrical and Informatics (JEEI) Jurnal Universal Technic Jurnal Ilmiah Sistem Informasi dan Ilmu Komputer Jurnal Publikasi Ilmu Komputer dan Multimedia Jurnal Publikasi Ilmu Manajemen Jurnal Penelitian Rumpun Ilmu Teknik Jurnal Publikasi Teknik Informatika (JUPTI) Jurnal Sains dan Ilmu Terapan Jurnal Sistem Informasi dan Ilmu Komputer Pandawa : Pusat Publikasi Hasil Pengabdian Masyarakat Jurnal Elektronika dan Teknik Informatika Terapan Journal of Technology Informatics and Engineering Seminar Nasional Teknologi dan Multidisiplin Ilmu Jupiter: Publikasi Ilmu Keteknikan Industri, Teknik Elektro dan Informatika Router : Jurnal Teknik Informatika dan Terapan Repeater: Publikasi Teknik Informatika dan Jaringan Neptunus: Jurnal Ilmu Komputer dan Teknologi Informasi International Journal of Computer Technology and Science International Journal of Information Engineering and Science International Journal of Electrical Engineering, Mathematics and Computer Science Jurnal Bengawan Solo: Pusat Kajian Penelitian dan Pengembangan Daerah Kota Surakarta Systematic Literature Review Journal Journal of New Trends in Sciences Router : Jurnal Teknik Informatika dan Terapan
Claim Missing Document
Check
Articles

Found 1 Documents
Search
Journal : International Journal of Electrical Engineering, Mathematics and Computer Science

Federated Hybrid CNN GRU and COBCO Optimized Elman Neural Network for Real Time DDoS Detection in Cloud Edge Environments Danang Danang; Maya Utami Dewi; Greget Widhiati
International Journal of Electrical Engineering, Mathematics and Computer Science Vol. 2 No. 2 (2025): June : International Journal of Electrical Engineering, Mathematics and Compute
Publisher : Asosiasi Riset Teknik Elektro dan Infomatika Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62951/ijeemcs.v2i2.293

Abstract

Improvement amount Distributed Denial of Service (DDoS) attacks in cloud infrastructure and edge computing demands solution adaptive, distributed, and efficient detection in a way computing. Research This propose an optimized Federated Learning (FL) based DDoS detection model using Centroid Opposition-Based Bacterial Colony Optimization (COBCO) to training the Elman Neural Network (ENN). The proposed architecture consists of of two components Main: on the edge node side, a hybrid Convolutional Neural Network–Gated Recurrent Unit (CNN–GRU) model is used to extraction feature local from traffic data network, while on the server side, model parameters from each node are collected and used for training an optimized ENN with COBCO. Approach This aim increase accuracy detection at a time maintain efficiency local data communication and privacy. In progress experimental, model tested use three benchmark datasets: NSL-KDD, CICIDS2017, and CICDDoS2019. The preprocessing process includes feature encoding categorical, normalization numeric, class balancing using SMOTE, as well as validation cross (k-fold). Initial results show that combination of FL, CNN–GRU, and COBCO–ENN produces improvement significant in accuracy and time convergence compared to approach conventional such as PSO, GA, and non- federative models. In addition, the proposed model capable maintain performance detection tall although executed in edge environment with limitations source Power.  Study This give contribution important in development system scalable, privacy-preserving, and adaptive intelligent DDoS detection to dynamics Then cross modern network. Integration of FL and COBCO in ENN training shows potential big for used in implementation real in cloud-edge infrastructure. In addition, the proposed model demonstrates strong scalability and adaptability, making it highly suitable for dynamic and evolving network environments.