Claim Missing Document
Check
Articles

Found 10 Documents
Search

Implementation of Particle Swarm Optimization (PSO) to Improve Neural Network Performance in Univariate Time Series Prediction Tyas, Fitri Ayuning; Setianama, Mamur; Fadilatul Fajriyah, Rizqi; Ilham, Ahmad
Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control Vol. 6, No. 4, November 2021
Publisher : Universitas Muhammadiyah Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22219/kinetik.v6i4.1330

Abstract

One of the oldest known predictive analytics techniques is time series prediction. The target in time series prediction is use historical data about a specific quantity to predicts value of the same quantity in the future. Multivariate time series (MTS) data has been widely used in time series prediction research because it is considered better than univariate time series (UTS) data. However, in reality MTS data sets contain various types of information which makes it difficult to extract information to predict the situation. Therefore, UTS data still has a chance to be developed because it is actually simpler than MTS data. UTS prediction treats forecasts as a single variable problem, whereas MTS may employ a large number of time-concurred series to make predictions. Neural Network (NN) model could be built to predict the target variable given the other (predictor) variables. In this study, we used Particle Swarm Optimization (PSO) algorithm to optimize performance of NN on a UTS dataset. Our proposed model is validated using x-validation and and use RMSE to measure its performance. The experimental results show that NN performance after optimization using PSO produces good results compared to classical NN performance. This is evidenced by the value of RMSE = 0.410 which is the smallest RMSE value produced. The smaller the RMSE value, the better the model performance. It can be concluded that the proposed method can improve NN performance on UTS data.
Optimalisasi fitur slide master dan hyperlink Ms. PowerPoint dalam pembuatan media presentasi bagi siswa Fitri Ayuning Tyas; Intan Alifiani; Muhammad Aznar Abdillah
Jurnal Inovasi Hasil Pengabdian Masyarakat (JIPEMAS) Vol 5, No 3 (2022): In progress (November)
Publisher : University of Islam Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33474/jipemas.v5i3.14749

Abstract

Pemanfaatan Menu Equation & Symbol untuk Menulis Rumus Matematika pada Microsoft Power Point Intan Alifiani; Fitri Ayuning Tyas; Azhar Basir
Bubungan Tinggi: Jurnal Pengabdian Masyarakat Vol 4, No 3 (2022)
Publisher : Universitas Lambung Mangkurat

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20527/btjpm.v4i3.5768

Abstract

Kegiatan pengabdian kepada masyarakat ini bertujuan membantu siswa SMK yang terdampak Corona Virus Disease 2019 (Covid-19) dalam pembelajaran daring dan penyelesaian tugas-tugas yang berkaitan dengan equation & symbol. Prosedur pelaksanaannya meliputi perizinan, wawancara, observasi, menyiapkan modul dan administrasi, kegiatan pelatihan, kegiatan pendampingan, evaluasi, tindak lanjut, dan analisis serta interpretasi data yang dilaksanakan pada 8 November 2021. Hasil kegiatan pengabdian kepada masyarakat adalah pemahaman tentang pemanfaatan menu equation & symbol, praktik menulis rumus matematika yang mudah, sedang, sampai rumit dalam menyelesaikan tugas-tugas sekolah, dan adanya peningkatan klasikal maupun individual dalam kategori sedang. Berdasarkan hasil kegiatan disarankan eksplorasi pemanfaatan menu equation & symbol, adanya praktek dalam jangka waktu yang lebih lama untuk rumus matematika yang tergolong rumit, tindak lanjut dan pelatihan berkala dengan bidang lain yang berhubungan dengan pemanfaatan fitur-fitur microsoft power point disertai dengan pencapaian peningkatan klasikal maupun individual sampai dengan kategori tinggi.  This community service activity aims to assist SMK students affected by Corona Virus Disease 2019 (Covid-19) in online learning and completing equations and symbols-related tasks. The implementation procedure includes licensing, interviews, observations, module preparation and administration, training and mentoring activities, evaluation, follow-up, and data analysis and interpretation, which will be carried out on November 19, 2021. The community service activities result in an understanding of the use of the equation & symbol menu, the practice of writing easy, medium, to complex mathematical formulas in completing school assignments, and an increase in classical and individual in the medium category. Based on the results of the activity, it is recommended to explore the use of the equation & symbol menu, practice for a longer period for complex mathematical formulas, follow-up and regular training with other fields related to the use of Microsoft PowerPoint features accompanied by the achievement of classical and individual to high category. 
Peningkatan Kompetensi Siswa Melalui Pelatihan Aplikasi Perkantoran Azhar Basir; Ryan Fitrian Pahlevi; Fitri Ayuning Tyas
Jurnal Pengabdian Masyarakat - PIMAS Vol 2 No 2 (2023): Mei
Publisher : LPPM Universitas Harapan Bangsa Purwokerto

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35960/pimas.v2i2.1030

Abstract

Perkembangan Teknologi Informasi dan Komunikasi saat ini telah membawa perubahan bagi kehidupan masyarakat Indonesia termasuk dalam dunia kerja sehingga generasi kerja harus mempersiapkan diri dengan meningkatkan kompetensinya. Layanan ini bertujuan untuk memberikan keterampilan dan pengetahuan yang dapat meningkatkan kompetensi terkait aplikasi perkantoran. Sasaran program pengabdian adalah siswa kelas 12 SMK Muhammadiyah 2 Paguyangan Kabupaten Brebes yang terletak di daerah pegunungan sehingga belum pernah dilakukan pengabdian sebelumnya. Metodenya meliputi teori dan praktek dengan Microsoft Office yang meliputi Microsoft Office word, Microsoft Office Excel, dan Microsoft Office PowerPoint. Hasil pengabdian menunjukkan bahwa siswa kelas 12 SMK Muhammadiyah Paguyangan brebes mengalami peningkatan kemampuan dan pengetahuan dalam mengoperasikan aplikasi perkantoran.
Penjurian Lomba Kompetensi Siswa (LKS) Bidang IT Network System Administrator Tingkat Kabupaten Brebes Tahun 2022 azhar basir; Mamur Setianama; Fitri Ayuning Tyas
Duta Abdimas Vol. 2 No. 2 (2023): Duta Abdimas: Jurnal Pengabdian Masyarakat
Publisher : LPPM Universitas Duta Bangsa Surakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47701/abdimas.v2i2.2601

Abstract

Sekolah Menengah Kejuruan (SMK) merupakan sekolah vokasi dengan berbagai jurusan dengan masing-masing kompetensinya, agar lulusanya dapat menjadi tenaga kerja yang professional dan handal tentu sekolah harus dapat memfasilitasi siswanya untuk dapat meningkatkan kompetensinya, salah satu wadah untuk meningkatkan kompetensi adalah dalam bentuk kompetisi, untuk itu forum Musyawarah Guru Mata Pelajaran (MGMP) kabupaten brebes memberikan wadah dalam bentuk Lomba Kompetensi Siswa (LKS) tingkat kabupaten brebes dengan salah satu mata lomba Bidang IT Network System Administrator yang di ikuti oleh 9 peserta dari 9 perwakilan SMK tingkat Kabupaten Brebes. Proses penilaian dilakukan di akhir setelah seluruh peserta lomba selesai mengerjakan project lomba. Penilaian dilakukan secara langsung ceking pada hasil setiap project yang dihasilkan oleh masing-masing peserta lomba, peserta dengan nilai tertinggi akan menjadi pemenang lomba.
Peningkatan Kompetensi Siswa Melalui Pelatihan Aplikasi Perkantoran Azhar Basir; Ryan Fitrian Pahlevi; Fitri Ayuning Tyas
Jurnal Pengabdian Masyarakat - PIMAS Vol. 2 No. 2 (2023): Mei
Publisher : LPPM Universitas Harapan Bangsa Purwokerto

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35960/pimas.v2i2.1030

Abstract

Perkembangan Teknologi Informasi dan Komunikasi saat ini telah membawa perubahan bagi kehidupan masyarakat Indonesia termasuk dalam dunia kerja sehingga generasi kerja harus mempersiapkan diri dengan meningkatkan kompetensinya. Layanan ini bertujuan untuk memberikan keterampilan dan pengetahuan yang dapat meningkatkan kompetensi terkait aplikasi perkantoran. Sasaran program pengabdian adalah siswa kelas 12 SMK Muhammadiyah 2 Paguyangan Kabupaten Brebes yang terletak di daerah pegunungan sehingga belum pernah dilakukan pengabdian sebelumnya. Metodenya meliputi teori dan praktek dengan Microsoft Office yang meliputi Microsoft Office word, Microsoft Office Excel, dan Microsoft Office PowerPoint. Hasil pengabdian menunjukkan bahwa siswa kelas 12 SMK Muhammadiyah Paguyangan brebes mengalami peningkatan kemampuan dan pengetahuan dalam mengoperasikan aplikasi perkantoran.
Optimasi Algoritma K-Nearest Neighbors Berdasarkan Perbandingan Analisis Outlier (Berbasis Jarak, Kepadatan, LOF) Fitri Ayuning Tyas; Mahda Nurayuni; Hidayatur Rakhmawati
Jurnal Nasional Teknik Elektro dan Teknologi Informasi Vol 13 No 2: Mei 2024
Publisher : Departemen Teknik Elektro dan Teknologi Informasi, Fakultas Teknik, Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/jnteti.v13i2.9579

Abstract

The current data growth affects data analysis in various fields, such as astronomy, business, medicine, education, and finance. The collected and stored data contain extreme values or observation values different from most other observation value results. These extreme values are called outliers. Outliers on some data often hold valuable information, necessitating thorough examination to determine whether to retain or discard them prior to data mining application. Outlier detection can be performed as a part of data preprocessing using outlier analysis techniques. Commonly utilized outlier analysis techniques encompass distance-based methods, density-based methods, and the local outlier factor (LOF) method. k-nearest neighbors (KNN) are a data mining algorithm susceptible to outliers due to its reliance on the value of k. Hence, having an appropriate handling mechanism is essential when employing KNN on datasets that contain outliers. The experimental method was selected to apply the proposed approach, aiming to optimize the KNN algorithm through a comparison of outlier analysis methods (KNN-distance, KNN-density, and KNN-LOF). The results revealed that KNN-density outperformed the others significantly: achieving an average accuracy of 99.34% at k=3 and k=5 for Wisconsin Breast Cancer, 85.25% at k=7 for Glass, and 85.45% at k=5 for Lymphography. Moreover, both the Friedman and Nemenyi tests validate a notable distinction between KNN-density and KNN-LOF.
Knowledge Acquisition for the Stunting Prevention Expert System (SIPENTING) using Decision Tree and Grid Search Basir, Azhar; Tyas, Fitri Ayuning
Sistemasi: Jurnal Sistem Informasi Vol 14, No 3 (2025): Sistemasi: Jurnal Sistem Informasi
Publisher : Program Studi Sistem Informasi Fakultas Teknik dan Ilmu Komputer

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32520/stmsi.v14i3.5004

Abstract

Stunting is a condition in which toddlers have a shorter height compared to the normal growth standard for their age. Preventing stunting is crucial, as children with stunting are more vulnerable to illnesses, experience growth failure before the age of 12 months, and tend to have lower intellectual abilities. Stunting can be diagnosed even before birth by assessing the nutritional status of pregnant women. Pregnant women with poor nutritional status are at a higher risk of delivering babies with low birth weight (LBW), which in turn increases the risk of stunting. Diagnosing the nutritional status of pregnant women and the risk of giving birth to stunted children typically requires expert knowledge, such as that of midwives or obstetricians. Expert systems make it possible for pregnant women to receive real-time diagnoses without the need for direct consultations with healthcare professionals. Expert knowledge in identifying the nutritional status of pregnant women and indicators of stunting risk is stored in a knowledge base, which is translated into a computer-readable rule base in the form of IF-THEN statements. This process is known as knowledge acquisition. The accuracy of the rule base plays a crucial role in ensuring reliable diagnostic results. Decision Tree is one of the data mining algorithms used to generate rule bases. In this study, the Decision Tree algorithm is optimized using Grid Search as a knowledge acquisition technique to determine the rule base applied in the Stunting Prevention Expert System (SIPENTING). The system is Android-based and aims to help pregnant women better understand their nutritional needs. Testing and validation results show that the Decision Tree model achieved an accuracy of 86.3%.
Optimalisasi fitur slide master dan hyperlink Ms. PowerPoint dalam pembuatan media presentasi bagi siswa Tyas, Fitri Ayuning; Alifiani, Intan; Abdillah, Muhammad Aznar
Jurnal Inovasi Hasil Pengabdian Masyarakat (JIPEMAS) Vol 5 No 3 (2022)
Publisher : University of Islam Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33474/jipemas.v5i3.14749

Abstract

Ms. PowerPoint merupakan aplikasi pengolah presentasi yang banyak digunakan dalam pembuatan bahan ajar bagi guru maupun sebagai tugas presentasi bagi siswa. Saat ini Ms. PowerPoint termasuk dalam materi komputer dasar yang tidak diajarkan sebagai mata pelajaran wajib pada kurikulum SMK jurusan RPL, melainkan terintegrasi dengan mata pelajaran lain. Siswa dianggap telah mahir mengoptimalkan fitur-fitur Ms. PowerPoint seperti slide master dan hyperlink. Kendati demikian, anggapan ini tidak sesuai dengan hasil pre test yang dilakukan. Data hasil pre test menunjukkan 89% siswa menggunakan Ms. Power Point sebagai aplikasi pengolah presentasi, namun hanya 36% siswa yang memiliki pengetahuan pemanfaatan fitur-fitur Ms. PowerPoint. Menyikapi hal tersebut tim pelaksana Pengabdian kepada Masyarakat (PkM) STMIK Muhammadiyah Paguyangan Brebes melakukan kegiatan pelatihan dengan tujuan melatih siswa membuat media presentasi dengan mengoptimalkan fitur slide master dan hyperlink. Hasil ketercapaian kegiatan pelatihan berdasarkan analisis pre test dan post test menggunakan metode Gain Scores membuktikan bahwa sebanyak 75% siswa mengalami peningkatan kemampuan dengan kriteria tinggi dan 25% siswa dengan kriteria sedang.
Application Rule Base on Facial Skin Type Identification Expert System using Forward Chaining Basir, Azhar; Tyas, Fitri Ayuning; Maghsyari, Yusril Ahzam
Sistemasi: Jurnal Sistem Informasi Vol 13, No 4 (2024): Sistemasi: Jurnal Sistem Informasi
Publisher : Program Studi Sistem Informasi Fakultas Teknik dan Ilmu Komputer

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32520/stmsi.v13i4.4071

Abstract

Most people, especially women, have a great desire to have white, healthy, clean and well-maintained facial skin. However, their knowledge about facial skin types is still limited, even though consulting with an expert requires a lot of time and money which results in someone not paying attention to facial skin type when carrying out treatment. Therefore, an expert system is needed that can help identify facial skin types. A rule base is a rule created based on expert knowledge needed to create an expert system. The forward chaining method is a search method or forward tracing technique that starts from existing information and combines rules to produce a conclusion or goal. The research results show that this application can run well and is suitable for use. Based on the results of system testing from an expert, it was concluded that identifying facial skin types based on facial skin criteria using the forward chaining method had an accuracy rate of 84% where the results of system testing produced several conclusions about the appropriate type of facial skin with the selected criteria data.