Claim Missing Document
Check
Articles

Found 2 Documents
Search

A Analisis Perbandingan Kinerja Metode Ensemble Bagging dan Boosting pada Klasifikasi Bantuan Subsidi Listrik di Kabupaten/Kota Bogor Cintari, Nanda Putri; Alifviansyah, Kevin; Tsabitah, Dhiya Ulayya; Sartono, Bagus; Firdawanti, Aulia Rizki
The Indonesian Journal of Computer Science Vol. 13 No. 6 (2024): The Indonesian Journal of Computer Science (IJCS)
Publisher : AI Society & STMIK Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33022/ijcs.v13i6.4537

Abstract

The classification of electricity subsidy recipients is an crucial step to ensure that the government's social assistance program is distributed in a targeted manner, so an appropriate analysis method is needed. This research compares the Bagging and Boosting ensemble methods for the classification of households receiving electricity subsidies in Bogor Regency and City using Susenas 2023 data totaling 2002 households. The bagging method uses Random Forest and Extra Trees, while boosting includes CatBoost and LightGBM. The results showed that the Extra Trees method of bagging provided the best performance with 91% accuracy, 95% F1score, and 97% sensitivity. Factors such as ownership of electronic goods and modern facilities, such as ownership of air conditioners, laptops, and televisions are the most significant variables in influencing the classification of electricity subsidy recipients. With high accuracy and minimal bias, this model effectively supports data-driven policies for electricity subsidy distribution. This research is expected to be a strategic recommendation for the government to improve the effectiveness of the electricity subsidy program to be more efficient, well-targeted, and support the improvement of people's welfare.
Identification of Latent Dimensions of Digital Readiness and Typology of Districts/Cities in Indonesia Using PCA and K-Means Clustering Sari, Jefita Resti; Fahira, Fani; Zahra, Latifah; Fitrianto, Anwar; Alifviansyah, Kevin
Journal of Applied Informatics and Computing Vol. 9 No. 6 (2025): December 2025
Publisher : Politeknik Negeri Batam

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30871/jaic.v9i6.11487

Abstract

Digital transformation is a key agenda in Indonesia’s national development that requires balanced readiness across regions. However, the level of digital readiness among districts and cities still varies widely, highlighting the need for a typology that can comprehensively describe existing disparities. This study aims to identify the latent dimensions of digital readiness and to develop a regional typology of Indonesian districts/cities using Principal Component Analysis (PCA) and K-Means clustering. The data were obtained from the 2024 Indonesian Digital Society Index (IMDI), which consists of four pillars—Infrastructure and Ecosystem, Digital Skills, Empowerment, and Employment—with ten sub-pillars. PCA reduced these correlated indicators into two main latent components, namely Digital Capacity and Participation and Digital Infrastructure Foundation, which together explain 70.4% of the total variance. Cluster validation using the Silhouette Score and Davies–Bouldin Index (DBI) showed that K = 2 yielded the best internal validity (Silhouette = 0.402; DBI = 0.906), but a three-cluster configuration (K = 3) was adopted to obtain a more interpretable typology of high-, medium-, and low-readiness regions (Silhouette = 0.346; DBI = 1.007). Spatial mapping reveals that high-readiness districts are concentrated in Java, Bali, and parts of Sumatra, whereas low-readiness areas dominate eastern Indonesia. These findings confirm persistent digital inequality across regions and provide a quantitative basis for targeted policy interventions, including infrastructure development, digital literacy programs, and innovation ecosystem strengthening, to support an inclusive digital transformation in Indonesia.