Claim Missing Document
Check
Articles

Found 3 Documents
Search

Deteksi Pengguna Masker Berbasis Pengolahan Citra Menggunakan Algoritma Yolo Sukriadi, Sukriadi; Gani, Hamdan; Yuyun, Yuyun
Jurnal Ilmiah Sistem Informasi dan Teknik Informatika (JISTI) Vol 8 No 1 (2025): Jurnal Ilmiah Sistem Informasi dan Teknik Informatika (JISTI)
Publisher : Lembaga Penelitian dan Pengabdian Masyarakat Universitas Lamappapoleonro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.57093/jisti.v8i1.274

Abstract

Penelitian ini menerapkan algoritma YOLO untuk mendeteksi pengguna masker serta untuk mengetahui akurasi yang dihasilkan menggunakan algoritma YOLO. Teknologi yang digunakan berbasis Pengolahan Citra. Keluaran dari sistem ini adalah peringatan bagi orang yang tidak menggunakan masker dan menghitung total jumlah pengguna masker dan jumlah yang tidak menggunakan masker. Penelitian ini menggunakan algoritma You Only Look Once (YOLO) generasi ketiga, yang terdiri dari convolutional neural network layer untuk proses ekstraksi fitur dari input serta proses localization objek, dan fully connected layer untuk mengklasifikasikan jenis larva udang. Hasil penelitian ini menunjukkan bahwa sistem pendeteksi pengguna masker tidak mendeteksi dengan baik, hal ini dipengaruhi karena kurangnya cahaya saat pengambilan data uji. Minimal cahaya yang digunakan dalam pengambilan data adalah 400 Lumen. Lumen merupakan satuan pengukuran standar untuk jumlah cahaya yang dapat dihasilkan oleh sebuah sumber cahaya. Dengan menggunakan algoritma YOLO untuk mendeteksi dan menghitung jumlah pengguna masker menghasilkan perhitungan dan deteksi penggunaan masker dengan Dataset yang digunakan pada penelitian ini sebanyak 700 data gambar sebagai data latih dan 70 data uji serta Penerapan algoritma yolo untuk mendeteksi penggunaan masker mencapai tingkat akurasi 97,51%
EVALUATION OF INDOBERT AND ROBERTA: PERFORMANCE OF INDONESIAN LANGUAGE TRANSFORMER MODELS IN SENTIMENT CLASSIFICATION Nur, M. Adnan; Umar, Najirah; Feng, Zhipeng; Gani, Hamdan
JIKO (Jurnal Informatika dan Komputer) Vol 8, No 2 (2025)
Publisher : Universitas Khairun

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33387/jiko.v8i2.9988

Abstract

The development of Natural Language Processing (NLP) technology has had a significant impact on various fields, especially in sentiment analysis. This analysis becomes important in understanding public perception, especially on social media which has a lot of opinions. Indonesian, with its morphological complexity, dialectal variations, and dynamic everyday vocabulary usage, presents unique challenges in the development of NLP models. This study aims to evaluate and compare the performance of two Indonesian language transformer models, namely IndoBERT (Indonesia Bidirectional Encoder Representations from Transformers) and RoBERTa Indonesia (Robustly Optimized BERT Pretraining Approach) in applying sentiment classification using the Indonesian General Sentiment Analysis Dataset. Both models were fine-tuned using consistent hyperparameter configurations to ensure the validity of the comparison. Evaluation was conducted based on classification metrics, namely precision, recall, F1-score, and accuracy. The results show that the IndoBERT model excels in all aspects of evaluation. IndoBERT achieved an accuracy of 70%, while RoBERTa Indonesia only reached 67%. Additionally, the average F1-score of IndoBERT at 0.69 is higher compared to RoBERTa, which only reached 0.65. The performance of IndoBERT is also more balanced in classifying the three sentiment categories (negative, neutral, and positive), whereas RoBERTa shows less consistent performance, especially in negative and positive sentiments. In the loss analysis, IndoBERT produced a lower evaluation loss value, indicating better generalization capability. Additionally, IndoBERT also shows faster and more stable training times compared to RoBERTa. This performance difference shows that the architecture and pre-trained data used by each model affect their ability to understand Indonesian contextually. This research provides a comprehensive comparative overview of the effectiveness of two transformer models in the task of Indonesian language sentiment analysis, as well as lays the groundwork for selecting a more optimal model in the development of NLP systems for social media.
ESP32-Based Sumo Robot Control System Using PlayStation 4 Controller with Semi-Autonomous Ultrasonic Features Sidehabi, Sitti Wetenriajeng; Mubarak, Muhammad Muflih; Gani, Hamdan
ILKOM Jurnal Ilmiah Vol 17, No 3 (2025)
Publisher : Prodi Teknik Informatika FIK Universitas Muslim Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33096/ilkom.v17i3.2591.292-301

Abstract

This study presents the design and implementation of a sumo robot control system integrating an ESP32 Devkit V1 microcontroller with a wireless PlayStation 4 controller and semi-autonomous features based on the HC-SR04 ultrasonic sensor and MG-995 servo motor. The system addresses challenges in sumo robots, including communication stability and control precision. Hardware integration involved DC motors, an L298N driver, and a LiPo battery, while software development used the Arduino IDE with Bluetooth connectivity. Experimental testing demonstrated stable communication with a maximum range of 36 meters, an average controller connection time of 1.998 seconds, and 100% detection accuracy within a 10 cm radius. Push performance tests showed the robot could move loads up to 1655 g with standard tires and 3340 g with sponge tires. These results highlight the advantages of combining consumer-grade game controllers with advanced microcontrollers, offering improved precision, extended range, and intuitive user interaction for competitive robotics.