Claim Missing Document
Check
Articles

Found 6 Documents
Search

Business Intelligence for Educational Institution : A Literature Review Maulida Hindrayani, Kartika
IJCONSIST JOURNALS Vol 2 No 1 (2020): September
Publisher : International Journal of Computer, Network Security and Information System

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (405.985 KB) | DOI: 10.33005/ijconsist.v2i1.32

Abstract

Educational institution is one of the organizations that should manage data to improve decision making. Students, department, research, and community services, are the data that should be managed in education. Those data could help in accreditation, marketing, and operational process. Business Intelligence (BI) helps visualize a huge amount of data. Executives will easily understand what the data try to imply in graphics. In this research, literature review about BI in educational organization will be conducted.
Determining Students Preparation for College Entrance Examinations in Indonesia From Twitter Data Using Exploratory Data Analysis Maulida Hindrayani, Kartika; Maulana F, Tresna; Aji R, Prismahardi; Kartini
IJCONSIST JOURNALS Vol 2 No 02 (2021): March
Publisher : International Journal of Computer, Network Security and Information System

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (491.744 KB) | DOI: 10.33005/ijconsist.v2i02.47

Abstract

Nowadays, educational data can be learned not only for those in Education but also in Information Technology. This happened because education and technology can no longer be separated. Senior high school graduates will take College Entrance Examination to be admitted to public institutions in Indonesia. Sometimes, they share their progress, target, and complain on social media. In this research, we collected data from Twitter. We explore the data to determine student's preparation using Exploratory Data Analysis. The results are positive words in both English and Indonesia, word count, word cloud, and geographical data plot.
PERBANDINGAN ARSITEKTUR VANILLA, STACKED, DAN BIDIRECTIONAL LONG SHORT-TERM MEMORY UNTUK PREDIKSI PERIODE MUSIM DI SURABAYA Sinthya Putri, Diana; Syaifullah Jauharis Saputra, Wahyu; Maulida Hindrayani, Kartika
JATI (Jurnal Mahasiswa Teknik Informatika) Vol. 9 No. 3 (2025): JATI Vol. 9 No. 3
Publisher : Institut Teknologi Nasional Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36040/jati.v9i3.13769

Abstract

Indonesia memiliki dua musim utama, namun perubahan iklim global menyebabkan pergeseran pola musim yang tidak menentu. Hal ini berdampak pada berbagai sektor, termasuk agribisnis, transportasi, dan konstruksi. Surabaya, sebagai pusat ekonomi di Jawa Timur, memerlukan prediksi musiman yang akurat untuk mitigasi risiko dan perencanaan strategis. Penelitian ini mengevaluasi kinerja tiga arsitektur Long Short-Term Memory (LSTM), yaitu Vanilla LSTM, Stacked LSTM, dan Bidirectional LSTM, dalam memprediksi pola musiman curah hujan di Surabaya. Data yang digunakan berasal dari BMKG Stasiun Meteorologi Maritim Tanjung Perak, mencakup periode 2001-2024. Hasil eksperimen menunjukkan bahwa Bidirectional LSTM mencapai nilai MAE terendah sebesar 25,7883, diikuti oleh Stacked LSTM dengan MAE 26,5515, dan Vanilla LSTM dengan MAE 27,7023. Temuan ini mengkonfirmasi bahwa arsitektur yang lebih dalam dan kompleks, seperti Stacked LSTM dan Bidirectional LSTM, mampu meningkatkan akurasi prediksi secara signifikan dibandingkan Vanilla LSTM.
PENERAPAN METODE MEAN SHIFT CLUSTERING UNTUK MENGELOMPOKKAN WILAYAH BERDASARKAN PENGELOLAAN SAMPAH Lidya Musaffak, Awal; Maulida Hindrayani, Kartika; Idhom, Mohammad
JATI (Jurnal Mahasiswa Teknik Informatika) Vol. 9 No. 3 (2025): JATI Vol. 9 No. 3
Publisher : Institut Teknologi Nasional Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36040/jati.v9i3.13777

Abstract

Pengelolaan sampah di Indonesia menjadi tantangan besar dengan meningkatnya timbulan sampah setiap tahun. Data SIPSN 2023 mencatat timbulan sampah harian sebesar 106.145,71 ton dan tahunan mencapai 38.743.185,18 ton. Setiap wilayah memiliki pola pengelolaan sampah yang berbeda, sehingga diperlukan segmentasi untuk memahami variasinya. Penelitian ini menerapkan algoritma Mean Shift Clustering untuk mengelompokkan wilayah berdasarkan data pengurangan dan penanganan sampah di setiap kabupaten dan kota. Dengan bandwidth 1.5, hasil analisis menunjukkan terbentuknya dua klaster dengan nilai Silhouette Score sebesar 0.649. Terdapat dua klaster yang dihasilkan dengan klaster 1 merupakan klaster dengan sampah yang terkelola rendah sedangkan klaster 2 adalah klaster dengan sampah terkelola tinggi. Hasil penelitian ini diharapkan dapat membantu dalam perumusan kebijakan yang lebih tepat sasaran untuk meningkatkan pengelolaan sampah secara efisien dan berkelanjutan di berbagai daerah.
ANALISIS SENTIMEN ULASAN APLIKASI SMILE INDONESIA MENGGUNAKAN METODE NAIVE BAYES DAN SUPPORT VECTOR MACHINE (SVM): SENTIMENT ANALYSIS OF SMILE INDONESIA APPLICATION REVIEWS USING NAIVE BAYES AND SUPPORT VECTOR MACHINE (SVM) METHODS Rhomaningtias, Lina; Khairunisa, Adenda; Shella May Wara, Shindi; Maulida Hindrayani, Kartika
HOAQ (High Education of Organization Archive Quality) : Jurnal Teknologi Informasi Vol. 16 No. 1 (2025): Jurnal HOAQ - Teknologi Informasi
Publisher : STIKOM Uyelindo Kupang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52972/hoaq.vol16no1.p79-91

Abstract

Tujuan studi ini adalah untuk mengevaluasi bagaimana pengguna memandang aplikasi digital SMILE Indonesia, sebuah platform layanan publik yang memantau penyampaian layanan kesehatan secara real-time. Menggunakan teknik web scraping, 383 ulasan pengguna dikumpulkan dari Google Play Store dan secara otomatis diklasifikasikan berdasarkan skor penilaian: ulasan dengan skor 1-2 dikategorikan sebagai negatif, ulasan dengan skor 4-5 sebagai positif, dan ulasan dengan skor 3 atau lebih rendah dikecualikan karena kemungkinan ambiguitas. Langkah-langkah pre-processing seperti case folding, pembersihan teks, tokenisasi, penghapusan kata, stemming, dan normalisasi diterapkan pada data yang telah dilabeli. Metode TF-IDF (Term Frequency–Inverse Document Frequency) kemudian digunakan untuk mewakili data secara numerik. Dua algoritma digunakan untuk klasifikasi: Naïve Bayes dan Support Vector Machine (SVM). Hasil evaluasi menunjukkan bahwa SVM mencapai 75% pada keempat metrik, sementara Naïve Bayes mencapai akurasi 79%, presisi 81%, recall 79%, dan F1-score 79%. Uji McNemar menunjukkan bahwa perbedaan kinerja antara kedua model tidak signifikan secara statistik (p > 0.05), meskipun Naïve Bayes memperoleh skor yang lebih tinggi. Penelitian sentimen ini memberikan wawasan tentang bagaimana masyarakat umum memandang layanan publik digital; sementara sikap negatif menekankan kesulitan teknis, sikap positif menyoroti aksesibilitas dan keuntungan praktis. Hasil ini dapat digunakan secara strategis oleh pengembang dan pembuat kebijakan untuk meningkatkan kualitas layanan digital berbasis e-government, terutama di bidang logistik kesehatan. The purpose of this study is to evaluate how users perceive the SMILE Indonesia digital application, a public service platform that monitors the delivery of health services in real time. Using web scraping techniques, 383 user reviews were collected from the Google Play Store and automatically classified based on rating scores: reviews with scores of 1-2 were categorized as negative, reviews with scores of 4-5 as positive, and reviews with scores of 3 or lower were excluded due to potential ambiguity. Pre-processing steps such as case folding, text cleaning, tokenization, word removal, stemming, and normalization were applied to the labeled data. The TF-IDF (Term Frequency–Inverse Document Frequency) method was then used to represent the data numerically. Two algorithms were used for classification: Naïve Bayes and Support Vector Machine (SVM). Evaluation results show that SVM achieved 75% on all four metrics, while Naïve Bayes achieved 79% accuracy, 81% precision, 79% recall, and 79% F1-score. The McNemar test indicates that the performance difference between the two models is not statistically significant (p > 0.05), although Naïve Bayes achieved higher scores. This sentiment analysis provides insights into how the general public perceives digital public services; while negative attitudes emphasize technical difficulties, positive attitudes highlight accessibility and practical benefits. These results can be strategically utilized by developers and policymakers to improve the quality of e-government-based digital services, particularly in the field of health logistics.
Implementasi Algoritma LightGBM untuk Prediksi Status Gizi Bayi dan Balita di Desa Doko Kabupaten Kediri Thoriqulhaq, Muhammad; Idhom, Mohammad; Maulida Hindrayani, Kartika
Jurnal Teknik Terapan Vol. 4 No. 2 (2025): Oktober
Publisher : P3M Politeknik Negeri Jember

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

MThe issue of nutritional status among infants and toddlers remains a serious concern in Indonesia, particularly in rural areas. Doko Village was chosen as the research location due to its significant challenges in child health. This study aims to develop a nutritional status prediction model based on the LightGBM algorithm, capable of processing anthropometric data to classify nutritional categories such as "Underweight", "Normal", and "Overweight". Using an 80:20 training-to-testing data ratio, the model achieved 97% accuracy and a 94% F1-score. In addition to building the prediction model, this study also developed an interactive web application using Streamlit, and compared its results with the conventional WHO AnthroPlus method. The results indicate that LightGBM offers advantages in terms of speed, flexibility, and predictive accuracy based on local data.