Claim Missing Document
Check
Articles

Found 3 Documents
Search

PERANCANGAN PROTOTYPE USER INTERFACE APLIKASI MOBILE TOKO KUE AZEL MENGGUNAKAN METODE DESIGN THINKING Harlina, Masimbangan Sabarina; Susilowati, Eel; -, Suharni; Herawati, Masimbangan Susana; Zamzani, Azzalia Zahra
JURNAL REKAYASA INFORMASI Vol 13 No 2 (2024): Jurnal Rekayasa Informasi
Publisher : PROGRAM STUDI SISTEM INFORMASI INSTITUT SAINS DAN TEKNOLOGI NASIONAL (ISTN)

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Toko Kue Azel merupakan salah satu usaha pangan yang yang mempromosikan dan menjual produknya masih memanfaatkan media teknologi informasi yang terbatas yaitu melalui media sosial Whatsapp, hal tersebut menyebabkan tidak maksimal dalam berpromosi maupun penjualan sehingga jangkauan konsumen belum sesuai harapan. Dengan dibuatnya User Interface dan User Experience aplikasi mobile Toko Kue Azel dengan berbasis Prototype untuk membantu pemilik toko kue memasarkan produknya secara luas, menyediakan informasi mengenai produk yang tersedia ataupun pre order¸ dan dapat membantu konsumen untuk membeli kue dengan mudah melalui aplikasi. Perancangan UI/UX yang berbasis aplikasi mobile untuk Toko Kue Azel dengan Prototype menggunakan metode Design Thinking. Lima tahapan pada Metode Design Thinking yaitu: Empathize, Define, Ideate, Prototype, dan testing. Pada tahap prototyping ini rancangan aplikasi mobile akan ditampilkan dalam bentuk wireframe. Selanjutnya Pengujian prototype menggunakan Maze dengan lima task dan lima umpan balik. Berdasarkan hasil pengujian menggunakan Maze menunjukkan bahwa aplikasi yang telah dibuat dapat digunakan/diakses dengan baik dengan fitur-fitur yang tersedia di aplikasi tersebut.. Hal tersebut berarti tidak ada task-task yang susah untuk dikerjakan. Dengan demikian Prototyping aplikasi mobile Toko Kue Azel dapat membantu para konsumen untuk membeli kue dengan mudah dan efisien serta dapat dijadikan media promosi. Kata Kunci : Prototype, Aplikasi Mobile, Design Thinking, Perancangan UI/UX
Pemodelan Sistem Rancangan Website Toko Ummi Cookies Menggunakan Uml (Unified Modelling Language) Harlina, Masimbangan Sabarina; Susilowati, Eel; Suharni, Suharni; Herawati, Masimbangan Susana; Atsiilah, Muhammad Fathi
Jurnal Teknologi Dan Sistem Informasi Bisnis Vol 7 No 3 (2025): Juli 2025
Publisher : Prodi Sistem Informasi Universitas Dharma Andalas

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47233/jteksis.v7i3.1943

Abstract

Ummi Cookies Shop sells various types of dry cakes (cookies). The shop sells its products by receiving orders from each customer via WhatsApp, the information of which is limited to the community. For new customers who have difficulty obtaining information about the products they want to order. Ummi Cookies shop hopes to be able to promote and sell the cake products offered easily and reach a wider consumer base online with e-commerce media. To realize his hopes, the researcher wants to create a system model for designing a website that is easy for system designers to understand and and meet the needs of users, namely shop owners and shop customers. Website design model Ummi Cookies Shop using UML (Unified Modelling Language). The UML diagrams that will be used are use case diagrams, activity diagrams, and class diagrams.The results of the website design created can be used as a reference by system developers in implementing a website that can help the business activities of Ummi Cookies Shop.
Utilizing Machine Learning for Anomaly Detection in Cybersecurity Systems Fahnun, Budi Utami; Susilowati, Eel; Fadlillah, Hadyan Mardhi; Irawaty
ENDLESS: INTERNATIONAL JOURNAL OF FUTURE STUDIES Vol. 7 No. 2 (2024): ENDLESS: International Journal of Future Studies
Publisher : Global Writing Academica Researching & Publishing

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Anomalies in cybersecurity systems are increasingly complex and sophisticated, making detection difficult using traditional rule-based and signature-based approaches. In facing these challenges, machine learning is crucial to improve real-time anomaly detection capabilities. This study aims to explore the role of machine learning in detecting anomalies in cybersecurity systems. The research method is carried out using a qualitative approach, collecting data from relevant literature and interviews with experts in the fields of cybersecurity and machine learning. The results of this study indicate that machine learning can effectively improve the ability of cybersecurity systems to detect and respond to threats more quickly and accurately. Implementing machine learning allows for deeper analysis of complex cybersecurity data, recognizing unexpected anomalous patterns, and adapting to new attacks. Despite challenges such as data variability and dynamic operational environments, the evaluation of model performance shows significant progress in protecting information systems from increasingly complex threats. The future of anomaly detection in cybersecurity promises the possibility of developing more sophisticated technologies, strengthening defenses against evolving threats, and improving overall security.