Claim Missing Document
Check
Articles

Found 3 Documents
Search

RANCANG BANGUN SISTEM PEMANTAU UNTUK MENGATASI KELEBIHAN BERAT TRUK YANG MASUK KAPAL DENGAN MENGUKUR BERAT MUATAN DAN MENGETAHUI IDENTITAS MOBIL MENGGUNAKAN RFID PADA DELPHI 7 Ondra Eka Putra; Nanda Tommy Wirawan; Lutfi Riady Putra
Jurnal ilmiah Sistem Informasi dan Ilmu Komputer Vol. 2 No. 2 (2022): Juli : Jurnal ilmiah Sistem Informasi dan Ilmu Komputer
Publisher : Lembaga Pengembangan Kinerja Dosen

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1244.083 KB) | DOI: 10.55606/juisik.v2i2.225

Abstract

Tugas akhir ini bertujuan untuk mengembangkan sebuah teknologi baru dibidang pengontrolan yaitu system pemantau untuk mengatasi kelebihan berat truk yang masuk kapal dengan mengukur berat muatan dan mengetahui identitas mobil. Dimana cara kerja alat ini adalah memanfaatkan tag kartu RFID untuk melakukan pengecekan data. Sebelum alat dijalankan terlebih dahulu koneksikan kabel usb ke laptop dan kabel power supply ke listrik. Kalau sudah terkoneksi maka daftarkan kartu RFID terlebih dahulu, jika sudah terdaftar maka pindahkan ke menu transaksi untuk melihat data yang sudah di daftarkan. Apabila data diterima maka motor servo akan aktif. Dan memanfaatkan sensor Infrared untuk menandakan adanya mobil pada tempat penimbangan. Dan memanfaatkan Load Cell untuk mendeteksi berapa berat beban yang diangkut mobil. Jika berat beban mobil tidak sesuai dengan ketentuan maka mobil disuruh parkir pada tempat yang sudah disediakan, jika berat mobil sesuai dengan ketentuan maka monil berjalan masuk ke kapal.  Dengan dibuatnya system ini diharapkan masyarakat menjadi lebih efisien dalam pemanfaatan penimbang berat muatan pada kapal.    
Inovasi Sistem Kontrol Akses Gerbang Kantor Pemerintahan Berbasis Teknologi Multisensor dan Deteksi Plat Nomor Kendaraan Masril, Mardhiah; Ondra Eka Putra; Hasri Awal; Billy Hendrik
JURNAL QUANCOM: QUANTUM COMPUTER JURNAL Vol. 2 No. 2 (2024): Desember 2024
Publisher : LPPM-ITEBA

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62375/jqc.v2i2.433

Abstract

Technological advances are developing rapidly at this time, the need for efficiency, security and automation in the office environment has become a top priority. One innovation that answers this need is technology for office gates, the need for a more sophisticated and efficient access control system is increasingly urgent. The problem that occurs, namely intrusions outside working hours, means that unknown individuals can easily enter the office area without permission. Additionally, cases involving lost employee ID cards, which were used by others to access designated areas, underscore the need for identification systems that are more secure and difficult to abuse. The office gate security system utilizes Webcam Camera input, RFID Reader, Fingerprint Sensor, Ultrasonic and Esp8266, Web, Servo, LED, LCD and Buzzer output. The Webcam camera can take pictures and save them on the web and the RFID Reader detects E-KTP, the Fingerprint sensor detects fingerprints and then the LCD displays information that registration is successful. This tool is processed with an Arduino Mega 2560 microcontroller as a connection.
Hybrid Data Mining For Member Determination And Financing Prediction In Syariah Financing Saving And Loan Cooperatives Ondra Eka Putra; Randy Permana
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol 8 No 2 (2024): April 2024
Publisher : Ikatan Ahli Informatika Indonesia (IAII)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29207/resti.v8i2.5683

Abstract

Syariah Financing Saving And Loan Cooperatives (KSPPS) is an Islamic financial institution aimed at people who are on the lower middle scale to lift the economy of small communities through microfinancing programs. Problems that often occur in member recommendations to get KSPPS financing are often not on target. In addition, The amount of member financing is often problematic due to a lack of analysis, resulting in poor financing instalments. This research aims to present an analysis model for clustering and classification using hybrid data mining algorithms. This research method is using hybrid data mining Algorithms, namely K-Medoids, Naïve Bayes, and k-Nearest Neighbors (k-NN). This study uses the historical dataset of the last two years on KSPPS BMT Dadok Tunggul Hitam as a total of 70 data samples. The analysis parameters consist of income, business, residence Status, financing application, billing history, and balance amount. The best analysis Model will be obtained by comparing the results between Naïve Bayes with K-Medoids, and K-Nearest Neighbor (k-NN) with K-Medoids. The results of this research showed the best performance is using the hybrid Naïve Bayes data mining model with K-Medoids which has an accuracy of 90.91% for data split 70:30, while performance with K-fold cross-validation shows an accuracy of 93.49% using this algorithm. Overall, the results of this study can provide an effective analysis model to determine the status of the loan.