Claim Missing Document
Check
Articles

Found 4 Documents
Search
Journal : TELKOMNIKA (Telecommunication Computing Electronics and Control)

Dynamic bandwidth allocation algorithm for long reach passive optical network Siti Hasunah Mohammad; Nadiatulhuda Zulkifli; Sevia Mahdaliza Idrus
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 19, No 3: June 2021
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v19i3.18787

Abstract

Next generation broadband access networks are gaining more interests from many key players in this field. The demands for longer reach and higher bandwidth are among the driving factors for such network as it can reach wider area up to 100 km, even beyond; has enhanced bandwidth capacity and transmission speed, but with low cost and energy consumption. One promising candidate is long reach passive optical network, a simplified network with reduced number of network elements, equipment interfaces, and even nodes; which leads to a significant reduction in the network’s capital expenditure and operational expenditure. Outcome of an extended reach often results in increased propagation delay of dynamic bandwidth allocation messages exchange between the optical line terminals and optical network units, leading to the degradations of bandwidth allocation and quality of service support. Therefore, an effective bandwidth allocation algorithm with appropriate service interval setup for a long reach network is proposed to ensure the delay is maintained under ITU-T G.987.1 standard requirement. An existing algorithm is improved in terms of service interval so that it can perform well beyond 100 km. Findings show that the improved algorithm can reduce the mean delay of high priority traffic classes for distance up to 140 km.
Varying Effects of Temperature and Path-length on Ozone Absorption Cross-Section Enenche Patrick; Michael David; A.O. Caroline; Mohd Haniff Ibrahim; Sevia Mahdaliza Idrus; Tay Ching En Marcus
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 16, No 2: April 2018
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v16i2.8577

Abstract

Inconsistencies in the absorption cross section of ozone have been observed. Hence, for accurate measurement, we have reported the combined effects of varying optical path-length and temperature on the ozone gas absorption cross section (OACS) at 334.15nm. Adopting optical absorption spectroscopy, results of the (OACS) have been simulated using spectralcalc simulator with HITRAN 12 has the latest line list. OACS increased by 52.27% as the temperature increased from 100K to 350K while it was slightly affected by a 0.007% decrease varying the path-length from 0.75cm-130cm.
Fundamental Review to Ozone Gas Sensing Using Optical Fibre Sensors Michael David; Mohd Haniff Ibrahim; Sevia Mahdaliza Idrus; Tay Ching En Marcus
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 13, No 4: December 2015
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v13i4.2047

Abstract

The manuscript is a review of basic essentials to ozone gas sensing with optical methods. Optical methods are employed to monitor optical absorption, emission, reflectance and scattering of gas samples at specific wavelengths of light spectrum. In the light of their importance in numerous disciplines in analytical sciences, necessary integral information that serves both as a basis and reference material for intending researchers and others in the field is inevitable. This review provides insight into necessary essentials to gas sensing with optical fibre sensors. Ozone gas is chosen as a reference gas. Simulation results for ozone gas absorption cross section in the ultraviolet (UV) region of the spectrum using spectralcalc.com simulation have also been included.
Efficient P2P data dissemination in integrated optical and wireless networks with Taguchi method M. A. Wong; Jamil Abedalrahim Jamil Alsayaydeh; Sevia Mahdaliza Idrus; Nadiatulhuda Zulkifli; M. Elshaikh
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 17, No 4: August 2019
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v17i4.12776

Abstract

The Quality of Service (QoS) resource consumption is always the tricky problem and also the on-going issue in the access network of mobile wireless part because of its dynamic nature of network wireless transmissions. It is very critical for the infrastructure-less wireless mobile ad hoc network that is distributed while interconnects in a peer-to-peer manner. Toward resolve the problem, Taguchi method optimization of mobile ad hoc routing (AODVUU) is applied in integrated optical and wireless networks called the adLMMHOWAN. Practically, this technique was carry out using OMNeT++ software by building a simulation based optimization through design of experiment. Its QoS network performance is examined based on packet delivery ratio (PDR) metric and packet loss probabilities (PLP) metric that consider the scenario of variation number of nodes. During the performing stage with random mobile connectivity based on improvement in optimized front-end wireless domain of AODVUU routing, the result is performing better when compared with previous study called the oRia scheme with the improvement of 14.1% PDR and 43.3% PLP in this convergence of heterogeneous optical wireless network.