Hayder Khaleel AL-Qaysi
University of Diyala

Published : 6 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : International Journal of Electrical and Computer Engineering

Evaluation of electrical load estimation in Diyala governorate (Baaquba city) based on fuzzy inference system Siraj Manhal Hameed; Hayder Khaleel AL-Qaysi; Ali Sachit Kaittan; Mohammed Hasan Ali
International Journal of Electrical and Computer Engineering (IJECE) Vol 11, No 5: October 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v11i5.pp3757-3762

Abstract

The evaluation of electrical load estimation is requisitely of any electrical power system. This manner is needed for system obligation, economical distribution and maintenance time of electrical system. In this paper, we propose electrical load estimation method based on fuzzy inference system which gives accurate results for estimated loads in Iraq (Diyala governorateBaaquba city). And it can assist the electrical generation and distribution system that depends on important parameters (temperature, humidity and the speed of the wind). By considering the parameters temperature, humidity and the speed of the wind. These parameters are applied as inputs to the fuzzy logic control system to obtain the normalize estimated load as output by electing membership functions. It is exceptionally valuable to form a choice by taking into consideration these assessed readings that come to from the proposed FIS that displayed in this paper with precision of 0.969 from the real stack request.
Design methodology for general enhancement of a single-stage self-compensated folded-cascode operational transconductance amplifiers in 65 nm CMOS process Hayder Khaleel AL-Qaysi; Adham Hadi Saleh; Tahreer Mahmood
International Journal of Electrical and Computer Engineering (IJECE) Vol 12, No 5: October 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v12i5.pp4712-4721

Abstract

The problems resulting from the use of nano-MOSFETs in the design of operational trans-conductance amplifiers (OTAs) lead to an urgent need for new design techniques to produce high-performance metrics OTAs suitable for very high-frequency applications. In this paper, the enhancement techniques and design equations for the proposed single-stage folded-cascode operational trans-conductance amplifiers (FCOTA) are presented for the enhancement of its various performance metrics. The proposed single-stage FCOTA adopts the folded-cascode (FC) current sources with cascode current mirrors (CCMs) load. Using 65 nm complementary metal-oxide semiconductor (CMOS) process from predictive technology model (PTM), the HSPICE2019-based simulation results show that the designed single-stage FCOTA can achieve a high open-loop differential-mode DC voltage gain of 65.64 dB, very high unity-gain bandwidth of 263 MHz, very high stability with phase-margin of 73°, low power dissipation of 0.97 mW, very low DC input-offset voltage of 0.14 uV, high swing-output voltages from −0.97 to 0.91 V, very low equivalent input-referred noise of 15.8 nV/Hz, very high common-mode rejection ratio of 190.64 dB, very high positive/negative slew-rates of 157.5/58.3 V⁄us, very fast settling-time of 5.1 ns, high extension input common-mode range voltages from −0.44to 1 V, and high positive/negative power-supply rejection ratios of 75.5/68.8 dB. The values of the small/large-signal figures-of-merits (????????????s) are the highest when compared to other reported FCOTAs in the literature.