Mohammed Fattah
Moulay Ismail University

Published : 5 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 3 Documents
Search
Journal : International Journal of Electrical and Computer Engineering

Automatic target detection and localization using ultra-wideband radar Dounia Daghouj; Marwa Abdellaoui; Mohammed Fattah; Said Mazer; Youness Balboul; Moulhime El Bekkali
International Journal of Electrical and Computer Engineering (IJECE) Vol 12, No 2: April 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v12i2.pp1695-1702

Abstract

The pulse ultra-wide band (UWB) radar consists of switching of energy of very short duration in an ultra-broadband emission chain, and the UWB signal emitted is an ultrashort pulse, of the order of nanoseconds, without a carrier. These systems can indicate the presence and distances of a distant object, call a target, and determine its size, shape, speed, and trajectory. In this paper, we present a UWB radar system allowing the detection of the presence of a target and its localization in a road environment based on the principle of correlation of the reflected signal with the reference and the determination of its correlation peak.
New microstrip patch antenna array design at 28 GHz millimeter-wave for fifth-generation application Salah-Eddine Didi; Imane Halkhams; Abdelhafid Es-Saqy; Mohammed Fattah; Younes Balboul; Said Mazer; Moulhime El Bekkali
International Journal of Electrical and Computer Engineering (IJECE) Vol 13, No 4: August 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v13i4.pp4184-4193

Abstract

This paper presents a study and an array design consisting of two microstrip patch antennas connected in series in a 2×1 form. This antenna provides better performance for the fifth-generation (5G) wireless communication system. The microstrip line feeding technique realizes the design of this antenna. This feed offers the best bandwidth, is easy to model, and has low spurious radiation. The distance between the feed line and the patch can adapt to the antenna’s impedance. In addition, the antenna array proposed in this paper is designed and simulated using the high frequency structure simulator (HFSS) simulation software at the operating frequency of 28 GHz for the 5G band. The support material used is Rogers RT/duroid® 5880, with relative permittivity of 2.2, a thickness of h=0.5 mm, and a loss tangent of 0.0009. The simulation results obtained in this research paper are as: reflection coefficient: -35.91 dB, standing wave ratio (SWR): 1.032, bandwidth: 1.43 GHz, gain: 9.42 dB, directivity: 9.47 dB, radiated power: 29.94 dBm, accepted the power: 29.99 dBm, radiation efficiency: 29.95, efficiency: 99.83%. This proposed antenna array has achieved better performance than other antenna arrays recently published in scientific journals regarding bandwidth, beam gain, reflection coefficient, SWR, radiated power, accepted power, and efficiency. Therefore, this antenna array will likely become an important competitor for many uses within the 5G wireless applications.
High rejection self-oscillating up-conversion mixer for fifth-generation communications Abdelhafid Es-saqy; Maryam Abata; Mohammed Fattah; Said Mazer; Mahmoud Mehdi; Moulhime El Bekkali; Catherine Algani
International Journal of Electrical and Computer Engineering (IJECE) Vol 13, No 5: October 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v13i5.pp4979-4986

Abstract

This paper presents the design of a pseudomorphic high electron mobility transistor (pHEMT) self-oscillating mixer (SOM) for millimeter wave wireless communication systems. The 180° out-of-phase technique is chosen to both improve the desired lower sideband (LSB) signal and to achieve a satisfactory rejection of the unwanted signals (LO, USB and IF). This SOM is designed on the PH15 process of UMS foundry which is based on 0.15 µm GaAs pHEMT. The signal is up-converted from 2 GHz-IF frequency to 26 GHz-LSB frequency, using an autogenerated 28 GHz-LO signal. Simulations were performed using the advanced design system (ADS) workflow. They show 6.4 dB conversion gain and a signal rejection rate of 29.7 dB for the unwanted USB signal. the chip size is 3.6 mm2.