Zahriladha Zakaria
Universiti Teknikal Malaysia Melaka (UTeM)

Published : 31 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 31 Documents
Search

Enhanced Antenna Design for Rectenna Application in the 2.45 GHz ISM Band Sharif Ahmed; Zahriladha Zakaria; Mohd Nor Husain; Azahari Salleh; Ammar Alhegazi
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 14, No 4: December 2016
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v14i4.4137

Abstract

In this paper a two layers microstrip antenna design at 2.45 GHz ISM band with Harmonic rejection filter embedded on the ground plane is presented. The two roger substrates with relative permittivity of 2.2 are separated by an air gap which enhances the antenna gain. The design is simulated using Computer Simulation Technology (CST) Studio Suite 2015. Different aperture couplings slots such as rectangular and triangular aperture coupling slots are studied and compared. It is found that the antenna with triangular aperture coupling slot enhances the antenna performance by suppressing 2nd and 3rd harmonics at 5 GHz and 8 GHz, respectively, increasing the antenna gain and providing a better circular polarization behavior. The simulated antenna design achieves a gain of 9 dB, return loss of -23.6dB, axial ratio of 1.27dB and axial-ratio bandwidth of 40.8% (2 ~ 3 GHz). The proposed antenna shows an enhancement in the antenna performance which makes it a suitable candidate for rectifying antenna or rectenna application as it can increase the total conversion efficiency resulting in a high output DC voltage used to power low power electronic and electrical devices such as wireless sensor.
Hybrid multi-independent mmWave MNOs assessment utilising spectrum sharing paradigm for 5G networks Mothana L. Attiah; A. A. Md Isa; Zahriladha Zakaria; M. K. Abdulhameed; Mowafak K. Mohsen; Ahmed M. Dinar
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 17, No 3: June 2019
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v17i3.11131

Abstract

Spectrum sharing paradigm (SSP) has recently emerged as an attractive solution to provide capital expenditure (CapEx) and operating expenditure (OpEx) savings and to enhance spectrum utilization (SU). However, practical issues concerning the implementation of such paradigm are rarely addressed (e.g., mutual interference, fairness, and mmWave base station density). Therefore, in this paper, we proposed ultra-reliable and proportionally fair hybrid spectrum sharing access strategy that aims to address the aforementioned aspects as a function of coverage probability (CP), average rate distributions (ARD), and the number of mmWave base stations (mBSs). In this strategy, the spectrum is sliced into three parts (exclusive, semi-pooled, and fully pooled). A typical user that belongs to certain operator has the right to occupy a part of the spectrum available in the high and low frequencies (28 and 73 GHz) based on an adaptive multi-state mmWave cell selection scheme (AMMC-S) which associates the user with the tagged mBS that offers a highest SINR to maintain more reliable connection and enrich the user experience. Numerical results show that significant improvement in terms of ARD, CP, fairness among operators, and maintain an acceptable level of mBSs density.
2.45 GHz rectenna with high gain for RF energy harvesting Maizatul Alice Meor Said; Zahriladha Zakaria; Mohd Nor Husain; Mohamad Harris Misran; Faza Syahirah Mohd Noor
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 17, No 1: February 2019
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v17i1.11592

Abstract

This paper presents a high gain rectenna at 2.45 GHz. Two layers low cost FR4 substrate has been used with air-gap technology for this fabricated rectenna. The proposed designs contain antenna and  open stub rectifying circuits with feedline. With the dimension of 100 x 100 x 5 mm3, this rectenna can perform high gain. The technique of air gap approach has been used for this proposed rectenna design so as to increase the antenna gain. Second and third harmonics has been eliminated by the introducing of triangular slot and ground plane to the developed design. The proposed rectenna successfully achieved the output voltages reaches 0.46 V when the input power is 0 dBm respectively when  the input power range is between -25 to 30 dBm. It is also can reach up to 6V when the maximum input power is applied. High gain, simple design, low profile and easy integration are the main advantages of this design of the rectenna when compared to past researchers.
Number of Iteration Analysis for Complex FSS Shape Using GA for Efficient ESG Nornikman Hassan; Zahriladha Zakaria; Badrul Hisham Ahmad; Naim Che Pee; Siti Nadzirah Salleh; Mohamad Zoinol Abidin Abd Aziz; Mohd Fareq Abdul Malek; Mohd Khairy Ismail
Bulletin of Electrical Engineering and Informatics Vol 7, No 4: December 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (506.558 KB) | DOI: 10.11591/eei.v7i4.1354

Abstract

ESG stand for Energy-Saving Glass is a special shielded glass with a metallic oxide layer to abuse undesirable of infrared and ultraviolet radiation into construction assemblies like our home. Firstly, different number of the iteration is the main thing to study a performance of the frequency selective surface shape using genetic algorithm (GA) for efficient energy saving glass (ESG). Three different values for the number of iterations were taken that is 1500, 2000 1nd 5000. Before that, the response of this complex FSS shape on incident electromagnetic wave with different symmetry shape are investigating. Three of them are no symmetrical shape, ¼ symmetrical shape, and 1/8 symmetrical shape. The 1500 number simulation considered about 89.000 per second, compared with 2000 iteration and 5000 iterations had consumed 105.09 per second and 196.00 per second, respectively. For 1/8 symmetry complex FSS shape, it demonstrations the improved performance of transmission loss at 1.2 GHz with - 40 dB. A 2 dB of transmission loss is achieved at WLAN application of 2.45 GHz with 0°, 30°, and 45° incidence angle shows.
Microwave Planar Sensor for Determination of the Permittivity of Dielectric Material Mohd Khairy Ismail; Zahriladha Zakaria; Nornikman Hassan; Sam Weng Yik; Mohd Mawardy Abdullah
Bulletin of Electrical Engineering and Informatics Vol 7, No 4: December 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (748.906 KB) | DOI: 10.11591/eei.v7i4.1355

Abstract

This paper proposed a single port rectangular microwave resonator sensor. This sensor operates at the resonance frequency of 4GHz. The sensor consists of micro-strip transmission line and applied the enhancement method. The enhancement method is able to improve the return loss of the sensor, respectively. Plus, the proposed sensor is designed and fabricated on Roger 5880 substrate. Based on the results, the percentage of error for the proposed rectangular sensor is 0.2% to 8%. The Q-factor of the sensor is 174.
Number of Iteration Analysis for Complex FSS Shape Using GA for Efficient ESG Nornikman Hassan; Zahriladha Zakaria; Badrul Hisham Ahmad; Naim Che Pee; Siti Nadzirah Salleh; Mohamad Zoinol Abidin Abd Aziz; Mohd Fareq Abdul Malek; Mohd Khairy Ismail
Bulletin of Electrical Engineering and Informatics Vol 7, No 4: December 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (506.558 KB) | DOI: 10.11591/eei.v7i4.1354

Abstract

ESG stand for Energy-Saving Glass is a special shielded glass with a metallic oxide layer to abuse undesirable of infrared and ultraviolet radiation into construction assemblies like our home. Firstly, different number of the iteration is the main thing to study a performance of the frequency selective surface shape using genetic algorithm (GA) for efficient energy saving glass (ESG). Three different values for the number of iterations were taken that is 1500, 2000 1nd 5000. Before that, the response of this complex FSS shape on incident electromagnetic wave with different symmetry shape are investigating. Three of them are no symmetrical shape, ¼ symmetrical shape, and 1/8 symmetrical shape. The 1500 number simulation considered about 89.000 per second, compared with 2000 iteration and 5000 iterations had consumed 105.09 per second and 196.00 per second, respectively. For 1/8 symmetry complex FSS shape, it demonstrations the improved performance of transmission loss at 1.2 GHz with - 40 dB. A 2 dB of transmission loss is achieved at WLAN application of 2.45 GHz with 0°, 30°, and 45° incidence angle shows.
Microwave Planar Sensor for Determination of the Permittivity of Dielectric Material Mohd Khairy Ismail; Zahriladha Zakaria; Nornikman Hassan; Sam Weng Yik; Mohd Mawardy Abdullah
Bulletin of Electrical Engineering and Informatics Vol 7, No 4: December 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (748.906 KB) | DOI: 10.11591/eei.v7i4.1355

Abstract

This paper proposed a single port rectangular microwave resonator sensor. This sensor operates at the resonance frequency of 4GHz. The sensor consists of micro-strip transmission line and applied the enhancement method. The enhancement method is able to improve the return loss of the sensor, respectively. Plus, the proposed sensor is designed and fabricated on Roger 5880 substrate. Based on the results, the percentage of error for the proposed rectangular sensor is 0.2% to 8%. The Q-factor of the sensor is 174.
Wideband power amplifier based on Wilkinson power divider for s-band satellite communications Mussa Mabrok; Zahriladha Zakaria; Tole Sutikno; Ammar Alhegazi
Bulletin of Electrical Engineering and Informatics Vol 8, No 4: December 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (631.684 KB) | DOI: 10.11591/eei.v8i4.1552

Abstract

This paper presents design and simulation of wideband power amplifier based on multi-section Wilkinson power divider. Class-A topology and ATF-511P8 transistor have been used. Advanced Design System (ADS) software used to simulate the designed power amplifier. The simulation results show an input return loss (S11)<-10dB, gain (S21)>10 dB over the entire bandwidth, and an output power around 28dBm at the Centre frequency of 3GHz. The designed amplifier is stable over the entire bandwidth (K>1). Inter-modulation distortion is -65.187dBc which is less than -50dBc. The designed amplifier can be used for the microwave applications which include weather radar, satellite communication, wireless networking, mobile, and TV.
Number of Iteration Analysis for Complex FSS Shape Using GA for Efficient ESG Nornikman Hassan; Zahriladha Zakaria; Badrul Hisham Ahmad; Naim Che Pee; Siti Nadzirah Salleh; Mohamad Zoinol Abidin Abd Aziz; Mohd Fareq Abdul Malek; Mohd Khairy Ismail
Bulletin of Electrical Engineering and Informatics Vol 7, No 4: December 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (506.558 KB) | DOI: 10.11591/eei.v7i4.1354

Abstract

ESG stand for Energy-Saving Glass is a special shielded glass with a metallic oxide layer to abuse undesirable of infrared and ultraviolet radiation into construction assemblies like our home. Firstly, different number of the iteration is the main thing to study a performance of the frequency selective surface shape using genetic algorithm (GA) for efficient energy saving glass (ESG). Three different values for the number of iterations were taken that is 1500, 2000 1nd 5000. Before that, the response of this complex FSS shape on incident electromagnetic wave with different symmetry shape are investigating. Three of them are no symmetrical shape, ¼ symmetrical shape, and 1/8 symmetrical shape. The 1500 number simulation considered about 89.000 per second, compared with 2000 iteration and 5000 iterations had consumed 105.09 per second and 196.00 per second, respectively. For 1/8 symmetry complex FSS shape, it demonstrations the improved performance of transmission loss at 1.2 GHz with - 40 dB. A 2 dB of transmission loss is achieved at WLAN application of 2.45 GHz with 0°, 30°, and 45° incidence angle shows.
Microwave Planar Sensor for Determination of the Permittivity of Dielectric Material Mohd Khairy Ismail; Zahriladha Zakaria; Nornikman Hassan; Sam Weng Yik; Mohd Mawardy Abdullah
Bulletin of Electrical Engineering and Informatics Vol 7, No 4: December 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (748.906 KB) | DOI: 10.11591/eei.v7i4.1355

Abstract

This paper proposed a single port rectangular microwave resonator sensor. This sensor operates at the resonance frequency of 4GHz. The sensor consists of micro-strip transmission line and applied the enhancement method. The enhancement method is able to improve the return loss of the sensor, respectively. Plus, the proposed sensor is designed and fabricated on Roger 5880 substrate. Based on the results, the percentage of error for the proposed rectangular sensor is 0.2% to 8%. The Q-factor of the sensor is 174.