Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : International Journal of Electrical and Computer Engineering

Analysis of earthquake hazards prediction with multivariate adaptive regression splines Dadang Priyanto; Muhammad Zarlis; Herman Mawengkang; Syahril Efendi
International Journal of Electrical and Computer Engineering (IJECE) Vol 12, No 3: June 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v12i3.pp2885-2893

Abstract

Earthquake research has not yielded promising results, either in the form of causes or revealing the timing of their future events. Many methods have been developed, one of which is related to data mining, such as the use of hybrid neural networks, support vector regressor, fuzzy modeling, clustering, and others. Earthquake research has uncertain parameters and to obtain optimal results an appropriate method is needed. In general, several predictive data mining methods are grouped into two categories, namely parametric and non-parametric. This study uses a non-parametric method with multivariate adaptive regression spline (MARS) and conic multivariate adaptive regression spline (CMARS) as the backward stage of the MARS algorithm. The results of this study after parameter testing and analysis obtained a mathematical model with 16 basis functions (BF) and 12 basis functions contributing to the model and 4 basis functions not contributing to the model. Based on the level of variable contribution, it can be written that the epicenter distance is 100 percent, the magnitude is 31.1 percent, the location temperature is 5.5 percent, and the depth is 3.5 percent. It can be concluded that the results of the prediction analysis of areas in Lombok with the highest earthquake hazard level are Malaka, Genggelang, Pemenang, Tanjung, Tegal Maja, Senggigi, Mangsit. Meninting, and Malimbu.
A stochastic approach for evaluating production planning efficiency under uncertainty Mochamad Wahyudi; Hengki Tamando Sihotang; Syahril Efendi; Muhammad Zarlis; Herman Mawengkang; Desi Vinsensia
International Journal of Electrical and Computer Engineering (IJECE) Vol 13, No 5: October 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v13i5.pp5542-5549

Abstract

Planning production is an essential component of the decision-making process, which has a direct bearing on the effectiveness of production systems. This study’s objective is to investigate the efficiency performance of decision-making units (DMU) in relation to production planning issues. However, the production system in a manufacturing environment is frequently subject to uncertain situations, such as demand and labor, and this can have an effect not only on production but also on profit. The robust stochastic data envelopment analysis model was proposed in this study with maximizing the number of outputs as the objective function thus means of handling uncertainty in input and output in production planning problems. This model, which is based on stochastic data envelopment analysis and a method of robust optimization, was proposed with the intention of providing an efficient plan of production for each DMU of stage production. The model is applied to small and medium-sized businesses (SMEs), with inputs consisting of the cost of labor, the number of customers, and the quantity of raw materials, and the output consisting of profit and revenue. It has been demonstrated through implementation that the proposed model is both efficient and effective.