Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Jurnal Informatika

Penerapan PSO Untuk Seleksi Fitur Pada Klasifikasi Dokumen Berita Menggunakan NBC Erfian Junianto; Dwiza Riana
Jurnal Informatika Vol 4, No 1 (2017): Jurnal INFORMATIKA
Publisher : LPPM Universitas Bina Sarana Informatika

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (861.877 KB) | DOI: 10.31294/ji.v4i1.1810

Abstract

AbstrakDigitalisasi informasi membuat penyebaran informasi menjadi lebih cepat, aktual, dan murah. Informasi yang disebarkan tersebut terjadi dalam bentuk teks, yang mana banyak informasi yang terkandung di dalamnya. Karena banyaknya informasi penting yang terkandung di dalam dokumen teks (berita), maka dibutuhkan metode tertentu untuk menklasifikasikannya. Beberapa penelitian telah dilakukan, namum belum ada yang menerapkan Particle Swarm Optimization (PSO) untuk seleksi fitur pada klasifikasi dokumen. Maka, dalam penelitian ini akan diterapkan PSO untuk melakukan seleksi fitur, dan juga Naïve Bayes Classifier (NBC) untuk klasifikasinya. Data yang digunakan berasal dari 20 Newsgroups. Model percobaan membagi dokumen training dari 10% hingga 90%. Hal ini dilakukan untuk mengetahui model mana yang akan menghasilkan akurasi tertinggi. Dari percobaan dengan model tersebut diketahui, akurasi tertinggi yang dicapai adalah 85,42% dengan dokumen training sebesar 80% (15.077 dokumen). Sedangkan, percobaan menggunakan contoh dokumen yang berbeda, dengan kelas yang sudah ditentukan menghasilkan akurasi hingga 99,87%. Dokumen testing yang digunakan sebesar 20% (3.770 dokumen). Kata Kunci: Particle Swarm Optimization, Naïve Bayes Classifier, Klasifikasi Dokumen, Akurasi, Text Mining. AbstractInformation digitization makes information dissemination faster, actual, and cheaper. The information disseminated occurs in the form of text, which contains much of the information contained in it. Because of the vast amount of important information contained in text documents (news), it takes certain methods to classify them. Several studies have been conducted, but none have implemented Particle Swarm Optimization (PSO) for feature selection on document classification. So, in this research will be applied PSO to perform feature selection, and also Naïve Bayes Classifier (NBC) for its classification. The data used comes from 20 Newsgroups. The trial model divides training documents from 10% to 90%. This is done to find out which model will produce the highest accuracy. From the experiments with the model is known, the highest accuracy achieved is 85.42% with training documents of 80% (15,077 documents). Meanwhile, experiments using different document samples, with a predetermined class yielding accuracy of up to 99.87%. Test document used is 20% (3770 documents). Keywords: Particle Swarm Optimization, Naïve Bayes Classifier, Document Classification, Accuracy, Text Mining.
DETEKSI DIAMETER TUMOR PADA KULIT MENGGUNAKAN SEGMENTASI CITRA BERDASARKAN KARAKTERISTIK ABCDE Wuwanjie Septian; Dwiza Riana; Maulana Jodi Prayogo
Jurnal Informatika Vol 3, No 2 (2016): Jurnal INFORMATIKA
Publisher : LPPM Universitas Bina Sarana Informatika

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (859.677 KB) | DOI: 10.31294/ji.v3i2.1311

Abstract

ABSTRACTSkin cancer is malfunctional skin cell which have an uncontrolled growth factor and in the final phase of skin cancer, can make the person who suffer die.  Detect the disease as early as possible is one way to avoid the worst possible defects and, because of its location on the surface of the skin, it would be easy for anyone to identify the skin cancer (melanoma). Early detection can be performed based on the characteristics Asymmetrical Shape, Border, Color, Diameter, Evolution (ABCDE). In this research, The early detection is focused on identifying  diameter at 30 nevus images. Research method that used is processing the nevus images by converting the images into HSI images and then converted into a binary image, next step is do a segmentation using median filter, morphological construction process and at the final stage, do a edge detection with sobel operator. Edge detection process will simplify the nevus diameter area calculation. Result of the research with the 30 nevus images is the image processing method which suggested in this research can detect the nevus diameter and sucess to identify 26 images as normal nevus with diameter <6mm and 4 nevus images as melanoma with diameter >6mm.Keyword: Nevus, Melanoma, Segmentation, Diameter Detection ABSTRAKKanker kulit merupakan pertumbuhan sel kulit abnormal yang tidak dapat dikendalikan dan pada stadium lanjut dapat mengakibatkan kematian. Menemukan penyakit ini sedini mungkin merupakan salah satu cara untuk menghindari kecacatan maupun kemungkinan terburuk. Karena letaknya dipermukaan kulit, akan mudah bagi siapa saja untuk mengenali sendiri kanker kulit. Deteksi dini kanker kulit dalam bidang dermatologi, dapat dideteksi berdasarkan karakteristik Asymmetrical Shape, Border, Color, Diameter, Evolution (ABCDE). Dalam penelitian ini, deteksi dini difokuskan pada identifikasi diameter pada 30 citra nevus. Metode penelitian berupa pengolahan citra nevus dengan melakukan konversi citra menjadi citra HSI lalu diubah menjadi citra biner, selanjutnya dilakukan tahap segmentasi menggunakan filter median, proses rekonstruksi morfologi dan pada tahap akhir dilakukan deteksi tepi dengan menggunakan operator sobel. Proses deteksi tepi akan mempermudah menghitung nilai luas diameter nevus. Hasil penelitian deteksi dini kanker kulit terhadap 30 citra nevus, diperoleh hasil bahwa metode pengolahan citra yang diusulkan dapat mendeteksi diameter nevus dan berhasil mengidentifikasi citra tersebut sebagai 26 citra memiliki luas diameter nevus yang diidentifikasi sebagai tumor jinak dan 4 citra nevus yang memiliki diameter > 6 mm dan dinyatakan sebagai tumor melanoma.Kata Kunci: Nevus, Melanoma, Segmentasi, Deteksi Diameter