Claim Missing Document
Check
Articles

Found 4 Documents
Search

Spatial analysis model for traffic accident-prone roads classification: a proposed framework Anik Vega Vitianingsih; Nanna Suryana; Zahriah Othman
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 10, No 2: June 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v10.i2.pp365-373

Abstract

The classification method in the spatial analysis modeling based on the multi-criteria parameter is currently widely used to manage geographic information systems (GIS) software engineering. The accuracy of the proposed model will play an essential role in the successful software development of GIS. This is related to the nature of GIS used for mapping through spatial analysis. This paper aims to propose a framework of spatial analysis using a hybrid estimation model-based on a combination of multi-criteria decision-making (MCDM) and artificial neural networks (ANNs) (MCDM-ANNs) classification. The proposed framework is based on the comparison of existing frameworks through the concept of a literature review. The model in the proposed framework will be used for future work on the traffic accident-prone road classification through testing with a private or public spatial dataset. Model validation testing on the proposed framework uses metaheuristic optimization techniques. Policymakers can use the results of the model on the proposed framework for initial planning developing GIS software engineering through spatial analysis models.
Analisis Spasial Untuk Klasifikasi Pengembangan Tempat Penampungan Sementara Menggunakan Metode Jaringan Syaraf Tiruan Luqman Hakim; Anik Vega Vitianingsih; Gita Indah Marthasari; Kresna Arief Nugraha; Anastasia Lidya Maukar
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol 6 No 1 (2022): Februari 2022
Publisher : Ikatan Ahli Informatika Indonesia (IAII)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (376.78 KB) | DOI: 10.29207/resti.v6i1.3713

Abstract

Garbage is a problem that needs an in-depth study in urban areas because the development of an area has consequences on increasing population density, facilities and infrastructure, public services, and other aspects that impact increasing the volume of waste. The distribution of temporary waste shelters (TPS) in each area is still insufficient to accommodate the volume of waste, and its availability is inadequate. The purpose of this study is to model spatial data through spatial analysis using artificial intelligence methods in classifying the development of integrated temporary shelter locations (TPST) and regional integrated temporary shelters (TPST Regions) by utilizing Web-based technology (Geographical Information System (Web-GIS). The Artificial Neural Network method with the Backpropagation algorithm is used for the spatial analysis process based on the parameters of the population, the amount of organic and inorganic waste, the amount of industrial waste, and the volume of the TPST and Regional TPST capacity. The spatial analysis results using the Artificial Neural Network method obtained an accuracy value of 7171.02%. The results of this study can be the basis for Department of Environment and Cleanliness policies for the development of TPST and TPST areas with information coverage at the village level.
POTENTIAL CUSTOMER ANALYSIS USING K-MEANS WITH ELBOW METHOD Fitri Marisa; Arie Restu Wardhani; Wiwin Purnomowati; Anik Vega Vitianingsih; Anastasia L Maukar; Erri Wahyu Puspitarini
JURNAL INFORMATIKA DAN KOMPUTER Vol 7, No 2 (2023): SEPTEMBER 2023
Publisher : Lembaga Penelitian dan Pengabdian Masyarakat - Universitas Teknologi Digital Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26798/jiko.v7i2.911

Abstract

This study aims to obtain cluster data of potential customers using the K-Means clustering approach supported by the elbow method to determine the correct number of clusters. The data sample that was processed was 100 customer data from a minimarket containing three criteria (gender, age, and purchase retention). The number of initial clusters is determined as 5 and then processed by calculating K-Means. The calculation of the SSE value in the K-Means process produces the lowest SSE value, and the sharpest elbow angle graph visualization is in cluster 4. So, it can be stated that the best number of clusters in this K-Means calculation is four (4) which are used as material for further analysis. Then the analysis results of four (4) clusters state that potential customers are those with high purchase retention, consisting of female customers who dominate in the three (3) clusters. Most potential female customers are customers with an age range above 35 years. Meanwhile, customers with less potential are spread across each cluster with varied gender and age but are not dominant. Thus, this knowledge can be used as a consideration for the management in determining the right promotion strategy.
Sistem Pendukung Keputusan Penerimaan Bantuan Non Tunai Menggunakan Metode AHP Dan WP Nurhaba Djiha; Anik Vega Vitianingsih; Mochammad Syaiful Riza; Anastasia Lidya Maukar; Seftin Fitri Ana Wati
JOINTECS (Journal of Information Technology and Computer Science) Vol 8, No 1 (2024)
Publisher : Universitas Widyagama Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31328/jointecs.v8i1.5222

Abstract

Saat ini proses penentuan penerima Bantuan Pangan Non Tunai (BPNT) masih kurang obyektif dan belum maksimal sehingga menimbulkan ketidakpuasan di kalangan warga desa. Tujuan dari penelitian ini adalah menggunakan metode AHP dan WP untuk mengembangkan sistem pendukung keputusan bagi penerima bantuan non tunai (BPNT). Bobot kriteria ditentukan dengan menggunakan metode AHP, dan nilai setiap alternatif dihitung dengan menggunakan metode WP. Parameter yang digunakan makan sebanyak dalam sehari, biaya pengobatan, pendapatan per bulan, sumber penerangan, bahan bakar memasak, fasilitas buang air besar, konsumsi jenis makanan, luas lantai, jenis dinding, sumber air minum, tabungan, jenis lantai, pembelian pakaian, pendidikan kepala rumah tangga dan sebanyak 20 data uji yang akan di olah dalam melakukan perangkingan. Akurasi sebesar 80% dicapai pada pengujian validasi dengan confusion matriks dan 20 kumpulan data alternatif, menunjukkan bahwa metode WP dapat menghasilkan rekomendasi alternatif yang paling optimal. Hasil penelitian ini dapat membantu pemerintah desa dalam menentukan penerima BPNT yang layak sesuai dengan kriteria yang digunakan.