Claim Missing Document
Check
Articles

Found 24 Documents
Search

Studi Komparasi Kinerja Teknologi Near Field Communication Pada Sistem Berbasis Android dan Embedded System Muhammad Haries; Yuwaldi Away; Fitri Arnia
Techno.Com Vol 20, No 2 (2021): Mei 2021
Publisher : LPPM Universitas Dian Nuswantoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33633/tc.v20i2.4369

Abstract

Penelitian ini membahas perbandingan kinerja dua perangkat berbasis Android dan Embedded system dalam melakukan pembacaan tag Near Field Communication.  Android dengan modul NFC NXP PN544 dan Embedded system dengan modul MFRC522. Studi kasus yang dilakukan untuk penelitian ini dengan menerapkannya pada manajemen aset. Penelitian ini bertujuan mengetahui kinerja dari kedua perangkat tersebut terdapat perbedaan signifikan atau tidak. Untuk mengetahui hal tersebut, penelitian ini menggunakan metode statistik uji Mann Whitney yang menghitung variabel waktu dan jarak ketika tag NFC berhasil terdeteksi, membaca, dan menampilkan informasi. Dengan metode uji Mann Whitney tersebut dapat diketahui terdapat perbedaan signifikan dari kedua perangkat tersebut berdasarkan hasil yang didapatkan. Setelah dilakukan pengujian, jarak efektif pada kedua alat didapatkan pada jarak 15 mm, 10 mm, dan 5 mm dengan pengujian pembacaan 15 tag NFC pada setiap jarak. Kemudian hasil tersebut diuji dengan metode Mann Whitney pada jarak 15 mm didapatkan nilai signifikasi sebesar .001, kemudian pada jarak 10 mm didapatkan nilai signifikasi sebesar .000, serta jarak 5 mm didapatkan nilai signifikasi sebesar .000 dan dari ketiga pengujian tersebut membuktikan bahwa kedua perangkat terdapat perbedaan signifikan dalam melakukan pembacaan tag NFC.
Pengenalan Aksara Jawi Tulisan Tangan Menggunakan Freemen Chain Code (FCC), Support Vector Machine (SVM) dan Aturan Pengambilan Keputusan Safrizal .; Fitri Arnia; Rusdha Muharar
JURNAL NASIONAL TEKNIK ELEKTRO Vol 5 No 1: Maret 2016
Publisher : Jurusan Teknik Elektro Universitas Andalas

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (548.515 KB) | DOI: 10.25077/jnte.v5n1.185.2016

Abstract

Jawi is one variant of Arabic script consists of 35 characters. Some of Jawi characters have the same main shape, but different number of dots in different location. Thus, recognition process of Jawi characters can be done by performing a classification based on the main shape. In recognition process, feature extraction plays an important role. In this research, Freeman Chain Code (FCC) was used as feature extraction and Support Vector Machine (SVM) as classifier. Then we apply the decision rules to classifySVMresult into Jawi characters. FCC is used to represent the boundary of Jawi characters into a chain code. Then the chain code is used bySVMto classify the characters into 19 groups. Feature of location and the number of dots are used by decision rules to classify the groups into Jawi characters. The Jawi characters are handwritten and generated by 10 writers from different backgrounds and ages. The recognition rate of this research was 80.00%.Keywords : Jawi script, handwriting, FCC, SVM, decision rules.Abstrak—Aksara Jawi merupakan salah satu varian dari aksara Arab yang terdiri dari 35 aksara. Dari 35 aksara Jawi  tersebut terdapat beberapa aksara dengan bentuk bagian utama yang sama namun memiliki letak dan jumlah titik yang berbeda. Karena perbedaan tersebut maka proses pengenalan aksara Jawi dapat dilakukan dengan melakukan klasifikasi berdasarkan perbedaan bentuk bagian utama. Pada penelitian ini Freeman Chain Code (FCC) digunakan sebagai ekstraksi fitur dan Support Vector Machine (SVM). FCC digunakan untuk merepresentasikan garis batas (boundary) aksara Jawi kedalam kode rantai. Kode rantai tersebut diklasifikasi dengan menggunakan SVM kedalam 19 kelompok. Fitur letak titik dan jumlah titik digunakan sebagai aturan pengambilan keputusan terhadap 19 kelompok hasil klasifikasi SVM kedalam aksara Jawi. Aksara Jawi yang digunakan merupakan tulisan tangan dari 10 orang penulis dari berbagai latar belakang dan umur. Tingkat keberhasilan klasifikasi penelitian ini mencapai 80,00%.Kata Kunci : aksara Jawi, tulisan tangan, FCC, SVM, aturan pengambilan keputusan
Perbandingan Kinerja Support Vector Machine (SVM) Dalam Mengenali Wajah Menggunakan SURF DAN GLCM Syamsul Bahri; Khairun Saddami; Fitri Arnia; Kahlil Muchtar
JURNAL NASIONAL TEKNIK ELEKTRO Vol 8, No 2: July 2019
Publisher : Jurusan Teknik Elektro Universitas Andalas

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (524.644 KB) | DOI: 10.25077/jnte.v8n2.620.2019

Abstract

Face recognition is one part of the biometrics research. Face recognition is widely used in identification and recognition process. Speed-up Robust Feature (SURF) is one of feature extraction method used in face recognition system. This research aims to compare face recognition performance between SURF and Gray Level Co-occurence Matrix (GLCM) methods for perspective rotation. In this study, the image features were extracted using SURF and GLCM. Each feature was used on classification stage using Support Vector Machine (SVM). The dataset was obtained from National Cheng Kung University (NCKU). The NCKU dataset has more variation of rotation angle. The dataset used in this study consists of 10 classes that showed 10 of the subject. The results show that SURF method obtained 85% of accuracy and GLCM method reached 50% of accuracy. Therefore, we concluded that SURF method has better performance on implementing on face recognition system.Keywords : SURF, GLCM, Face Recognition, SVM Abstrak Pengenalan wajah merupakan salah satu bagian dari penelitian biometrika. Pengenalan wajah banyak digunakan dalam proses identifikasi manusia. Metode ekstraksi fitur Speed-Up Robust Feature (SURF) merupakan salah satu metode yang digunakan untuk mengenali wajah. Penelitian ini bertujuan untuk membandingkan kinerja sistem pengenalan wajah dengan menggunakan metode ekstraksi fitur SURF dan Gray Level Co-occurence Matrix (GLCM). Pada penelitian ini, data input wajah akan diekstraksi fiturnya menggunakan SURF dan GLCM. Setiap fitur digunakan pada tahapan klasifikasi menggunakan Support Vector Machine (SVM). Data yang digunakan merupakan data yang didapatkan dari National Cheng Kung University (NCKU). Data wajah NCKU mempunyai sudut rotasi yang lebih banyak. Dataset yang digunakan pada penelitian ini terdiri dari 10 kelas yang menunjukkan 10 subjek penelitian. Pengenalan wajah menggunakan metode SURF dan SVM mempunyai akurasi 85%, sedangkan menggunakan metode GLCM mempunyai akurasi 50%. Hasil menunjukkan bahwa metode SURF mempunyai kinerja yang lebih baik dari metode GLCM.Kata Kunci : SURF, GLCM, pengenalan wajah, SVM
Klasifikasi Otomatis Motif Tekstil Menggunakan Support Vector Machine Multi Kelas Ramadhani Ramadhani; Fitri Arnia; Rusdha Muharar
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 7 No 1: Februari 2020
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Tekstur merupakan pola atau motif tertentu yang tersusun secara berulang-ulang pada citra. Tekstur mudah dikenali/dikelompokkan oleh manusia, tetapi sulit bagi mesin. Klasifikasi tekstur secara otomatis berguna dan dibutuhkan pada banyak bidang seperti industri tekstil, pendaratan pesawat otomatis, fotografi dan seni. Pada industri tekstil, klasifikasi tekstur otomatis dapat meningkatkan efisiensi proses desain motif. Motif tekstil terdiri dari banyak kelompok, sehingga diperlukan metode klasifikasi multi kelas untuk mengelompokkan motif-motif tersebut. Artikel ini memaparkan kinerja tiga metode Support Vector Machine (SVM) multi kelas: One Against One (OAO), Directed Acyclic Graph (DAG) dan One Against All (OAA) pada klasifikasi motif dari citra tekstil, dimana Wavelet Gabor digunakan sebagai pengekstraksi fitur. Kinerja SVM diukur berdasarkan parameter akurasi dan fitur Gabor diekstraksi dengan skala dan orientasi yang berbeda. Tujuan penelitian ini adalah menentukan kinerja SVM dan pengaruh jumlah skala dan orientasi Gabor yang digunakan pada klasifikasi motif tekstil. Pada simulasi digunakan 120 citra tekstil yang terbagi menjadi tiga kategori motif: bunga, kotak dan polkadot. Akurasi pengelompokan SVM mencapai kisaran 90%-100%, bahkan untuk citra yang terpotong. Pengujian dengan k-fold validation menunjukkan bahwa SVM DAG lebih baik daripada SVM OAO dan SVM OAA, dengan akurasi mencapai 78%. AbstractTexture is a repetition of a specific pattern concatenation in an image. The Texture can be defined as a repetition of pattern in an image.  The texture is easy for the human to classify, but it is not easy for a machine. Automatic texture classification is useful and required in many fields such as textile industry, automatic aircraft landing, photography and art. In the textile industry, automatic texture classification can enhance the efficiency of motif designing process. The textile motif is various and should be grouped into more than two classes; therefore a multiclass classification is required. This article discusses the performance of multiclass Support Vector Machine (SVM): One Against One (OAO), Directed Acyclic Graph (DAG) and One Against All (OAA) in classifying textile motifs, in which the Gabor Filter was used to extract the texture features. The SVM performance was measured in terms of accuracy, while the Gabor features were extracted in a different combination of scales and orientations. The purpose of the work is to measure the SVM performance and determine the effect of using various Gabor scales and orientations in textile motifs classification. We used 120 textile images with three motifs: flower, boxes and polka dot. The SVM accuracy of 90%-100% was achieved; even for cropped textile images. Using the k-fold validation, the accuracy of SVM DAG was 78%, higher than those of SVM OAO and SVM OAA
Kombinasi Metode Nilai Ambang Lokal dan Global untuk Restorasi Dokumen Jawi Kuno Khairun Saddami; Fitri Arnia; Yuwaldi Away; Khairul Munadi
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 7 No 1: Februari 2020
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25126/jtiik.2020701741

Abstract

Dokumen Jawi kuno merupakan warisan budaya yang berisi informasi penting tentang peradaban masa lalu yang dapat dijadikan pedoman untuk masa sekarang ini. Dokumen Jawi kuno telah mengalami penurunan kualitas yang disebabkan oleh beberapa faktor seperti kualitas kertas atau karena proses penyimpanan. Penurunan kualitas ini menyebabkan informasi yang terdapat pada dokumen tersebut menghilang dan sulit untuk diakses. Artikel ini mengusulkan metode binerisasi untuk membangkitkan kembali informasi yang terdapat pada dokumen Jawi kuno. Metode usulan merupakan kombinasi antara metode binerisasi berbasis nilai ambang lokal dan global. Metode usulan diuji terhadap dokumen Jawi kuno dan dokumen uji standar yang dikenal dengan nama Handwritten Document Image Binarization Contest (HDIBCO) 2016. Citra hasil binerisasi dievaluasi menggunakan metode: F-measure, pseudo F-measure, peak signal-to-noise ratio, distance reciprocal distortion, dan misclasification penalty metric. Secara rata-rata, nilai evaluasi F-measure dari metode usulan mencapai 88,18 dan 89,04 masing-masing untuk dataset Jawi dan HDIBCO-2016. Hasil ini lebih baik dari metode pembanding yang menunjukkan bahwa metode usulan berhasil meningkatkan kinerja metode binerisasi untuk dataset Jawi dan HDIBCO-2016. AbstractAncient Jawi document is a cultural heritage, which contains knowledge of past civilization for developing a better future. Ancient Jawi document suffers from severe degradation due to some factors such as paper quality or poor retention process. The degradation reduces information on the document and thus the information is difficult to access. This paper proposed a binarization method for restoring the information from degraded ancient Jawi document. The proposed method combined a local and global thresholding method for extracting the text from the background. The experiment was conducted on ancient Jawi document and Handwritten Document Image Binarization Contest (HDIBCO) 2016 datasets. The result was evaluated using F-measure, pseudo F-measure, peak signal-to-noise ratio, distance reciprocal distortion, dan misclassification penalty metric. The average result showed that the proposed method achieved 88.18 and 89.04 of F-measure, for Jawi and HDIBCO-2016, respectively. The proposed method resulted in better performance compared with several benchmarking methods. It can be concluded that the proposed method succeeded to enhance binarization performance.
PENGENALAN GERAKAN ISYARAT BAHASA INDONESIA MENGGUNAKAN ALGORITMA SURF DAN K-NEAREST NEIGHBOR Nur Amalia Hasma; Fitri Arnia; Rusdha Muharar
Jurnal Komputer, Informasi Teknologi, dan Elektro Vol 7, No 1 (2022)
Publisher : Universitas Syiah Kuala

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24815/kitektro.v7i1.23262

Abstract

Berkomunikasi adalah kebutuhan dasar setiap manusia untuk berinteraksi satu sama lain. Dalam kehidupan sehari-hari, manusia menggunakan komunikasi verbal untuk berinteraksi. Namun tidak setiap orang mampu menggunakan komunikasi secara verbal, seperti tuna rungu dan tuna wicara. Terdapat keterbatasan ketika melakukan komunikasi antara orang normal dengan tuna rungu dan tuna wicara dikarenakan kurangnya pemahaman mengenai bahasa isyarat. Pada penelitian ini dilakukan pengenalan bahasa isyarat, berupa isyarat huruf dan angka (SIBI) dengan memanfaatkan teknik pengolahan citra. Proses pengenalan dilakukan dengan menggunakan algoritma Speeded Up Robust Features (SURF) sebagai metode ekstraksi fitur dan algoritma K-Nearest Neighbor (K-NN) sebagai metode klasifikasi. Pengujian akurasi digunakan metode k-fold Cross Validation. Uji akurasi menggunakan 10-fold Cross Validation untuk menentukan nilai K. Dengan menggunakan nilai K = 7 didapatkan hasil akurasi tertinggi untuk pengenalan Gerakan Isyarat Bahasa Indonesia dengan persentase 90%.
On Reducing ShuffleNets’ Block for Mobile-based Breast Cancer Detection Using Thermogram: Performance Evaluation Rizka Ramadhana; Khairun Saddami; Khairul Munadi; Fitri Arnia
Indonesian Journal of Electrical Engineering and Informatics (IJEEI) Vol 10, No 4: December 2022
Publisher : IAES Indonesian Section

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52549/ijeei.v10i4.4062

Abstract

In this paper, we proposed a reduced-block-Shufflenet (RB-ShuffleNet) for thermal breast cancer detection. RB-ShuffleNet is a modification of Shufflenet obtained by reducing blocks from the original architecture. The images for training and testing were obtained from Database for Mastology Research (DMR). First, we detected and cropped the image based on the region of interest (ROI), in which the ROI is determined by using the red intensity profile. Then, the ROI images were trained using RB-ShuffleNets. In the experiments, we built eight architectures, based on ShuffleNet, each with a different number of reduced blocks. The result showed that RB-Shufflenet with four reduced blocks had fewer than 50% of the learning parameters of the original Shufflenet, without compromising its performance. The RB-ShuffleNet with up to four reduced blocks could achieve 100% testing accuracy. Furthermore, The RB-ShuffleNets performed better than MobileNetV2 and resulted in higher accuracy when fed with ROI images. Due to its light structure and good performance, we recommend RB-ShuffleNet as mobile-based CNN model which is preferable to implement in breast cancer detection.
Improved Classification of Handwritten Jawi Script Based on Main Part of Script Body Safrizal Razali; Fitri Arnia; Rusdha Muharrar; Kahlil Muchtar; Akhyar Bintang
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol 7 No 1 (2023): February 2023
Publisher : Ikatan Ahli Informatika Indonesia (IAII)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29207/resti.v7i1.4600

Abstract

Since the entry of Islam, many ancient relics in the archipelago were written using Jawi script. Due to human or natural factors, these ancient relics will be damaged or destroyed. To avoid the loss of this ancient heritage data, the data must be stored in digital documents. In order to convert digital documents into machine-readable text format, the use of Optical Character Recognition (OCR) technology is inevitable. In this research, OCR technology is implemented on isolated Jawi scripts. Freeman Chain Code (FCC) is used to extract the isolated Jawi script features. Subsequently, the FCC feature is fed into Support Vector Machine (SVM) in order to classify the character. The decision rule classification is applied to the class of SVM classification in the Jawi script form. The results of the SVM classification into 19 classes reached 81.58%, while the results for merging into 15 classes produced better results with the accuracy 84.21%. Feature extraction of dot location is divided into the top, middle, and bottom. Feature extraction of the number of dotss is done by counting the number of dots, while feature extraction of the presence of holes is carried out by detecting the presence of holes in the characters. These features are applied to the class of results from SVM classification with decision-making rules. The percentage of success in applying the decision rules to the results of the classification of incorporation into 15 classes by SVM reached 92.86%. Further research will be conducted to determine the effect of the feature of the location of the dot and the number of dots on the shape of the main part of the character.
Penerapan Deskriptor Warna Dominan untuk Temu Kembali Citra Busana pada Peranti Bergerak Yustina Dhyanti; Khairul Munadi; Fitri Arnia
Jurnal Rekayasa Elektrika Vol 12, No 3 (2016)
Publisher : Universitas Syiah Kuala

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1062.094 KB) | DOI: 10.17529/jre.v12i3.5701

Abstract

Nowadays, clothes with various designs and color combinations are available for purchasing through an online shop, which is mostly equipped with keyword-based item retrieval. Here, the object in the online database is retrieved based on the keyword inputted by the potential buyers. The keyword-based search may bring potential customers on difficulties to describe the clothes they want to buy. This paper presents a new searching approach, using an image instead of text, as the query into an online shop. This method is known as content-based image retrieval (CBIR).  Particularly, we focused on using color as the feature in our Muslimah clothes image retrieval. The dominant color descriptor (DCD) extracts the wardrobe's color. Then, image matching is accomplished by calculating the Euclidean distance between the query and image in the database, and the last step is to evaluate the performance of the DWD by calculating precision and recall. To determine the performance of the DCD in extracting color features, the DCD is compared with another color descriptor, that is dominant color correlogram descriptor (DCCD). The values of precision and recall of DCD ranged from 0.7 to 0.9 while the precision and recall of DCCD ranged from 0.7 to 0.8. These results showed that the DCD produce a superior performance compared to DCCD in retrieving a set of clothing image, either plain or patterned colored clothes.
Substraksi Latar Menggunakan Nilai Mean Untuk Klasifikasi Kendaraan Bergerak Berbasis Deep Learning Ilal Mahdi; Kahlil Muchtar; Fitri Arnia; Tia Ernita
Jurnal Rekayasa Elektrika Vol 18, No 2 (2022)
Publisher : Universitas Syiah Kuala

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1626.433 KB) | DOI: 10.17529/jre.v18i2.25224

Abstract

Moving object detection systems have been widely used in everyday life. Currently, research in the field of background subtraction is still being carried out to achieve maximum accuracy results. This study aims to model the background subtraction of an image using the mean value with the concept of non-overlapping block. Furthermore, the background abstraction results will be used in deep learning-based moving object detection. Specifically, the input image will be divided into several blocks, then the mean value of each block will be calculated to later produce a binary block (binary map). The binary blocks that have been generated will be used as input for background modeling. The background model aims to separate moving objects from the background in the input image. The resulting moving object (object localization) will be sent to the object classification stage using deep learning. The dataset used in this study is CDNet 2014. The results of the study were able to produce a more accurate moving object detection system. Quantitative tests carried out resulted in an accuracy of above 90%.